High School

Factor the polynomial.

[tex]\[ x^3 - 7x^2 - 5x + 35 \][/tex]

[tex]\[ x^3 - 7x^2 - 5x + 35 = \square \][/tex]

Answer :

We want to factor the polynomial

[tex]$$
x^3 - 7x^2 - 5x + 35.
$$[/tex]

A good strategy is to use factoring by grouping. Follow these steps:

1. First, rewrite the polynomial by grouping the first two terms and the last two terms:

[tex]$$
x^3 - 7x^2 - 5x + 35 = (x^3 - 7x^2) + (-5x + 35).
$$[/tex]

2. Factor out the common factors in each group:

- In the first group, [tex]$x^3 - 7x^2$[/tex], factor out [tex]$x^2$[/tex]:

[tex]$$
x^3 - 7x^2 = x^2 (x - 7).
$$[/tex]

- In the second group, [tex]$-5x + 35$[/tex], factor out [tex]$-5$[/tex]:

[tex]$$
-5x + 35 = -5 (x - 7).
$$[/tex]

3. Now the expression becomes

[tex]$$
x^2 (x-7) - 5 (x-7).
$$[/tex]

4. Notice that both terms contain the common factor [tex]$(x-7)$[/tex]. Factor out [tex]$(x-7)$[/tex]:

[tex]$$
x^2 (x-7) - 5 (x-7) = (x-7)(x^2-5).
$$[/tex]

Thus, the polynomial factors as

[tex]$$
x^3-7x^2-5x+35 = (x-7)(x^2-5).
$$[/tex]]