College

Factor the following expression:

[tex] x^2 - 26x + 169 - y^2 [/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. [tex] x^2 - 26x + 169 - y^2 = [/tex] [tex] \square [/tex]

B. [tex] x^2 - 26x + 169 - y^2 [/tex] is prime.

Answer :

Let's factor the expression [tex]\( x^2 - 26x + 169 - y^2 \)[/tex].

1. Identify the Perfect Square Trinomial:

First, focus on the expression [tex]\( x^2 - 26x + 169 \)[/tex]. We can see if this part is a perfect square trinomial.

The expression [tex]\( x^2 - 26x + 169 \)[/tex] can be rewritten as:

[tex]\[
(x - 13)^2
\][/tex]

because when expanded, this gives us:

[tex]\[
(x - 13)(x - 13) = x^2 - 13x - 13x + 169 = x^2 - 26x + 169
\][/tex]

2. Write the Entire Expression as a Difference of Squares:

The expression [tex]\( x^2 - 26x + 169 - y^2 \)[/tex] now becomes:

[tex]\[
(x - 13)^2 - y^2
\][/tex]

3. Apply the Difference of Squares Formula:

A difference of squares is expressed as [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].

Here, [tex]\( a = x - 13 \)[/tex] and [tex]\( b = y \)[/tex]. So we have:

[tex]\[
(x - 13 - y)(x - 13 + y)
\][/tex]

Therefore, the factored form of the expression [tex]\( x^2 - 26x + 169 - y^2 \)[/tex] is:

[tex]\[
(x - 13 - y)(x - 13 + y)
\][/tex]

This matches the solution choice provided.