College

Factor completely:

[tex]\[ 27x^2 + 18x + 3 \][/tex]

Select the correct choice below and, if necessary, fill in any answer box within your choice.

A. [tex]\[ 27x^2 + 18x + 3 = \square \][/tex]

B. [tex]\[ 27x^2 + 18x + 3 \][/tex] is prime.

Answer :

To factor the polynomial
[tex]$$27x^2 + 18x + 3,$$[/tex]
follow these steps:

1. Factor out the greatest common factor (GCF):

Notice that each term in the polynomial is divisible by 3. Factor 3 out:
[tex]$$27x^2 + 18x + 3 = 3(9x^2 + 6x + 1).$$[/tex]

2. Factor the quadratic inside the parentheses:

Now, focus on the quadratic
[tex]$$9x^2 + 6x + 1.$$[/tex]

We look for a product of two binomials. Notice that if we consider the square of the binomial [tex]$(3x + 1)$[/tex], we have:
[tex]$$(3x+1)^2 = (3x+1)(3x+1).$$[/tex]

Expanding [tex]$(3x+1)^2$[/tex] gives:
[tex]$$ (3x+1)^2 = 9x^2 + 2\cdot 3x \cdot 1 + 1^2 = 9x^2 + 6x + 1.$$[/tex]

This matches the quadratic inside the parentheses.

3. Write the complete factorization:

Substitute the factored quadratic back:
[tex]$$27x^2 + 18x + 3 = 3(3x+1)^2.$$[/tex]

Thus, the completely factored form is:
[tex]$$\boxed{3(3x+1)^2}.$$[/tex]