Answer :
To factor the polynomial [tex]\(-x^5 + 10x^4 - 25x^3\)[/tex] completely, we can follow these steps:
1. Look for a common factor:
- Each term in the polynomial [tex]\(-x^5\)[/tex], [tex]\(10x^4\)[/tex], and [tex]\(-25x^3\)[/tex] includes a factor of [tex]\(x^3\)[/tex].
- Additionally, the coefficients [tex]\(-1\)[/tex], [tex]\(10\)[/tex], and [tex]\(-25\)[/tex] do not have any common factors other than 1.
- So, the greatest common factor (GCF) we can factor out is [tex]\(-x^3\)[/tex].
2. Factor out the GCF:
- When we factor [tex]\(-x^3\)[/tex] out of each term, the expression becomes:
[tex]\[
-x^3(x^2 - 10x + 25)
\][/tex]
3. Factor the remaining quadratic:
- Now, we need to factor the quadratic [tex]\(x^2 - 10x + 25\)[/tex].
- Notice that this quadratic is a perfect square trinomial. It can be rewritten as:
[tex]\[
(x - 5)(x - 5) \quad \text{or} \quad (x - 5)^2
\][/tex]
4. Write the complete factorization:
- Combine the factored quadratic with the factored out GCF:
[tex]\[
-x^3(x - 5)^2
\][/tex]
So, the complete factorization of the polynomial [tex]\(-x^5 + 10x^4 - 25x^3\)[/tex] is [tex]\(-x^3(x - 5)^2\)[/tex].
The correct choice is:
A. [tex]\(-x^5 + 10x^4 - 25x^3 = -x^3(x - 5)^2\)[/tex]
1. Look for a common factor:
- Each term in the polynomial [tex]\(-x^5\)[/tex], [tex]\(10x^4\)[/tex], and [tex]\(-25x^3\)[/tex] includes a factor of [tex]\(x^3\)[/tex].
- Additionally, the coefficients [tex]\(-1\)[/tex], [tex]\(10\)[/tex], and [tex]\(-25\)[/tex] do not have any common factors other than 1.
- So, the greatest common factor (GCF) we can factor out is [tex]\(-x^3\)[/tex].
2. Factor out the GCF:
- When we factor [tex]\(-x^3\)[/tex] out of each term, the expression becomes:
[tex]\[
-x^3(x^2 - 10x + 25)
\][/tex]
3. Factor the remaining quadratic:
- Now, we need to factor the quadratic [tex]\(x^2 - 10x + 25\)[/tex].
- Notice that this quadratic is a perfect square trinomial. It can be rewritten as:
[tex]\[
(x - 5)(x - 5) \quad \text{or} \quad (x - 5)^2
\][/tex]
4. Write the complete factorization:
- Combine the factored quadratic with the factored out GCF:
[tex]\[
-x^3(x - 5)^2
\][/tex]
So, the complete factorization of the polynomial [tex]\(-x^5 + 10x^4 - 25x^3\)[/tex] is [tex]\(-x^3(x - 5)^2\)[/tex].
The correct choice is:
A. [tex]\(-x^5 + 10x^4 - 25x^3 = -x^3(x - 5)^2\)[/tex]