College

Express the equation in exponential form:

(a) [tex]\log _2 4=2[/tex]

Write your answer in the form [tex]2^A = B[/tex]. Then [tex]A = \square[/tex] and [tex]B = \square[/tex].

(b) [tex]\log _5 3125=5[/tex]

Write your answer in the form [tex]5^C = D[/tex]. Then [tex]C = \square[/tex] and [tex]D = \square[/tex].

Answer :

Sure! Let's express the logarithmic equations in exponential form.

### (a) The equation is [tex]\(\log_2 4 = 2\)[/tex].

To convert a logarithmic equation to its exponential form, we use the relationship:

[tex]\[
\log_{\text{base}}(\text{value}) = \text{result} \quad \implies \quad \text{base}^{\text{result}} = \text{value}
\][/tex]

For [tex]\(\log_2 4 = 2\)[/tex]:

- The base is 2,
- The result is 2,
- The value is 4.

So, the equation in exponential form is:

[tex]\[
2^2 = 4
\][/tex]

Thus, [tex]\(A = 2\)[/tex] and [tex]\(B = 4\)[/tex].

### (b) The equation is [tex]\(\log_5 3125 = 5\)[/tex].

Similarly, we apply the same relationship:

For [tex]\(\log_5 3125 = 5\)[/tex]:

- The base is 5,
- The result is 5,
- The value is 3125.

The exponential form is:

[tex]\[
5^5 = 3125
\][/tex]

Therefore, [tex]\(C = 5\)[/tex] and [tex]\(D = 3125\)[/tex].

So to summarize:

- For part (a): [tex]\(2^2 = 4\)[/tex] with [tex]\(A = 2\)[/tex] and [tex]\(B = 4\)[/tex].
- For part (b): [tex]\(5^5 = 3125\)[/tex] with [tex]\(C = 5\)[/tex] and [tex]\(D = 3125\)[/tex].