Answer :
Let's solve each of these multiplication problems step by step:
47 x 40
- First, break it down as: [tex]47 \times (4 \times 10) = (47 \times 4) \times 10[/tex].
- Calculate [tex]47 \times 4 = 188[/tex].
- Then multiply by 10: [tex]188 \times 10 = 1880[/tex].
- So, [tex]47 \times 40 = 1880[/tex].
61
- There is no specific operation to perform here, as this seems out of context.
64 x 40
- Break it down as: [tex]64 \times (4 \times 10) = (64 \times 4) \times 10[/tex].
- Calculate [tex]64 \times 4 = 256[/tex].
- Then multiply by 10: [tex]256 \times 10 = 2560[/tex].
- So, [tex]64 \times 40 = 2560[/tex].
70 x 15
- Split as: [tex]70 \times (10 + 5) = (70 \times 10) + (70 \times 5)[/tex].
- Calculate [tex]70 \times 10 = 700[/tex].
- Calculate [tex]70 \times 5 = 350[/tex].
- Add these results: [tex]700 + 350 = 1050[/tex].
- So, [tex]70 \times 15 = 1050[/tex].
57 x 12
- Split as: [tex]57 \times (10 + 2) = (57 \times 10) + (57 \times 2)[/tex].
- Calculate [tex]57 \times 10 = 570[/tex].
- Calculate [tex]57 \times 2 = 114[/tex].
- Add these results: [tex]570 + 114 = 684[/tex].
- So, [tex]57 \times 12 = 684[/tex].
55 x 55
- Use the formula [tex](a+b)^2 = a^2 + 2ab + b^2[/tex], where [tex]a = 50[/tex] and [tex]b = 5[/tex].
- Calculate [tex]a^2 = 50^2 = 2500[/tex].
- Calculate [tex]2ab = 2 \times 50 \times 5 = 500[/tex].
- Calculate [tex]b^2 = 5^2 = 25[/tex].
- Add these up: [tex]2500 + 500 + 25 = 3025[/tex].
- So, [tex]55 \times 55 = 3025[/tex].
Each calculation is broken down into simpler parts to make it easier to understand and solve.