Answer :
To solve the polynomial [tex]\(6x^3 + 5x - 25\)[/tex] for [tex]\(x = 4\)[/tex], let’s evaluate it step by step:
1. Substitute the value of [tex]\(x\)[/tex]:
We know [tex]\(x = 4\)[/tex].
2. Calculate each term:
- First term:
Compute [tex]\(6x^3\)[/tex]:
[tex]\[
6 \times (4)^3 = 6 \times 64 = 384
\][/tex]
- Second term:
Compute [tex]\(5x\)[/tex]:
[tex]\[
5 \times 4 = 20
\][/tex]
- Third term:
The constant term is [tex]\(-25\)[/tex].
3. Add all the terms together:
Combine the results to find the total value of the polynomial:
[tex]\[
384 + 20 - 25 = 379
\][/tex]
Thus, the value of the polynomial [tex]\(6x^3 + 5x - 25\)[/tex] for [tex]\(x = 4\)[/tex] is 379.
1. Substitute the value of [tex]\(x\)[/tex]:
We know [tex]\(x = 4\)[/tex].
2. Calculate each term:
- First term:
Compute [tex]\(6x^3\)[/tex]:
[tex]\[
6 \times (4)^3 = 6 \times 64 = 384
\][/tex]
- Second term:
Compute [tex]\(5x\)[/tex]:
[tex]\[
5 \times 4 = 20
\][/tex]
- Third term:
The constant term is [tex]\(-25\)[/tex].
3. Add all the terms together:
Combine the results to find the total value of the polynomial:
[tex]\[
384 + 20 - 25 = 379
\][/tex]
Thus, the value of the polynomial [tex]\(6x^3 + 5x - 25\)[/tex] for [tex]\(x = 4\)[/tex] is 379.