Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Evaluate the expression \( f(g(-3)) \) using the given functions.

a. 3
b. -7
c. 5
d. -5

Determine the value of \( f(h(7)) \) using the provided functions.

a. 57
b. 51
c. 50
d. 49

Answer :

[tex]\(f(g(-3))\)[/tex] is equal to c. [tex]\(23\)[/tex]. [tex]\( f(h(7)) \)[/tex] is equal to d. [tex]\( 442 \)[/tex].

To evaluate the expression [tex]\(f(g(-3))\)[/tex], you first need to find the value of [tex]\(g(-3)\)[/tex] and then substitute that value into the function [tex]\(f(x)\)[/tex].

Given that [tex]\(g(x) = x^2 + 3\)[/tex], let's find [tex]\(g(-3)\)[/tex]:

[tex]\[g(-3) = (-3)^2 + 3 = 9 + 3 = 12\][/tex]

Now that we have the value of [tex]\(g(-3)\)[/tex], substitute it into the function [tex]\(f(x) = 2x - 1\)[/tex]:

[tex]\[f(g(-3)) = f(12) = 2 \times 12 - 1 = 24 - 1 = 23\][/tex]

Therefore, [tex]\(f(g(-3))\)[/tex] is equal to [tex]\(23\)[/tex].

To find the value of [tex]\( f(h(7)) \)[/tex], you need to first find [tex]\( h(7) \)[/tex] and then substitute that value into the function [tex]\( f(x) \)[/tex].

Given that [tex]\( h(x) = 2x + 1 \)[/tex], let's find [tex]\( h(7) \)[/tex]:

[tex]\[ h(7) = 2 \times 7 + 1 = 14 + 1 = 15 \][/tex]

Now that we have the value of [tex]\( h(7) \)[/tex], substitute it into the function [tex]\( f(x) = 2x^2 - 8 \)[/tex]:

[tex]\[ f(h(7)) = f(15) = 2 \times 15^2 - 8 = 2 \times 225 - 8 = 450 - 8 = 442 \][/tex]

Therefore, [tex]\( f(h(7)) \)[/tex] is equal to [tex]\( 442 \)[/tex].

The probable question may be: "Evaluate the expression f(g(-3)) using the given functions. f(x)=2x-1; g(x)= [tex]x^2[/tex]+3
a. 33
b. -77
c. 23
d. -28

Determine the value of f(h(7)) using the provided functions. f(x)= [tex]2x^2[/tex]-8; h(x)=2x+1

a. 577

b. 299
c. 450
d. 442"