High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Evaluate or simplify the expression for [tex]g(x) = 8x^5 - 58x^4 + 60x^3 + 140[/tex] when [tex]x = 6[/tex].

Answer :

To solve the problem, we need to evaluate the polynomial function [tex]\( g(x) = 8x^5 - 58x^4 + 60x^3 + 140 \)[/tex] at [tex]\( x = 6 \)[/tex].

Here are the steps to find [tex]\( g(6) \)[/tex]:

1. Substitute [tex]\( x \)[/tex] with 6 in the polynomial:

[tex]\[
g(6) = 8(6)^5 - 58(6)^4 + 60(6)^3 + 140
\][/tex]

2. Calculate each term:

- [tex]\( 6^5 = 7776 \)[/tex]
- Multiply by 8: [tex]\( 8 \times 7776 = 62208 \)[/tex]

- [tex]\( 6^4 = 1296 \)[/tex]
- Multiply by 58: [tex]\( 58 \times 1296 = 75168 \)[/tex]

- [tex]\( 6^3 = 216 \)[/tex]
- Multiply by 60: [tex]\( 60 \times 216 = 12960 \)[/tex]

3. Combine these results:

Now put these values into the expression:
[tex]\[
g(6) = 62208 - 75168 + 12960 + 140
\][/tex]

4. Perform the addition and subtraction:

- Start with [tex]\( 62208 - 75168 = -12960 \)[/tex]
- Then add [tex]\( 12960 \)[/tex]: [tex]\(-12960 + 12960 = 0\)[/tex]
- Finally, add 140: [tex]\( 0 + 140 = 140 \)[/tex]

Hence, the value of [tex]\( g(6) \)[/tex] is [tex]\( 140 \)[/tex].