College

Evaluate each algebraic expression for [tex] c = 0.6 [/tex] and [tex] d = 300 [/tex].

1. [tex] d \div c \times 400 [/tex]

2. [tex] d \div 50 \times 7 [/tex]

3. [tex] 24 \div c \times d [/tex]

4. [tex] 15 \times c \times 25 [/tex]

5. [tex] d \div 15 \times 1000 [/tex]

6. [tex] d \times 720 \div c [/tex]

7. [tex] d \times 20 \times c [/tex]

8. [tex] 19 \times d \div c [/tex]

9. [tex] 150c \div d [/tex]

10. [tex] \frac{c+d}{75} [/tex]

11. [tex] c \cdot 500 - d [/tex]

12. [tex] (d-c) \times 400 [/tex]

Answer :

Sure! Let's evaluate each algebraic expression step by step for [tex]\( c = 0.6 \)[/tex] and [tex]\( d = 300 \)[/tex]:

1. Expression 7: [tex]\( \frac{d}{c} \times 400 \)[/tex]

- First, divide [tex]\( d \)[/tex] by [tex]\( c \)[/tex]: [tex]\( \frac{300}{0.6} = 500 \)[/tex]
- Then, multiply the result by 400: [tex]\( 500 \times 400 = 200,000 \)[/tex]

Result: 200,000

2. Expression 8: [tex]\( \frac{d}{50} \times 7 \)[/tex]

- First, divide [tex]\( d \)[/tex] by 50: [tex]\( \frac{300}{50} = 6 \)[/tex]
- Then, multiply the result by 7: [tex]\( 6 \times 7 = 42 \)[/tex]

Result: 42

3. Expression 9: [tex]\( \frac{24}{c} \times d \)[/tex]

- First, divide 24 by [tex]\( c \)[/tex]: [tex]\( \frac{24}{0.6} = 40 \)[/tex]
- Then, multiply the result by [tex]\( d \)[/tex]: [tex]\( 40 \times 300 = 12,000 \)[/tex]

Result: 12,000

4. Expression 10: [tex]\( 15 \times c \times 25 \)[/tex]

- First, multiply 15 by [tex]\( c \)[/tex]: [tex]\( 15 \times 0.6 = 9 \)[/tex]
- Then, multiply the result by 25: [tex]\( 9 \times 25 = 225 \)[/tex]

Result: 225

5. Expression 11: [tex]\( \frac{d}{15} \times 1000 \)[/tex]

- First, divide [tex]\( d \)[/tex] by 15: [tex]\( \frac{300}{15} = 20 \)[/tex]
- Then, multiply the result by 1000: [tex]\( 20 \times 1000 = 20,000 \)[/tex]

Result: 20,000

6. Expression 12: [tex]\( d \times 720 \div c \)[/tex]

- First, multiply [tex]\( d \)[/tex] by 720: [tex]\( 300 \times 720 = 216,000 \)[/tex]
- Then, divide the result by [tex]\( c \)[/tex]: [tex]\( \frac{216,000}{0.6} = 360,000 \)[/tex]

Result: 360,000

7. Expression 13: [tex]\( d \times 20 \times c \)[/tex]

- First, multiply [tex]\( d \)[/tex] by 20: [tex]\( 300 \times 20 = 6,000 \)[/tex]
- Then, multiply the result by [tex]\( c \)[/tex]: [tex]\( 6,000 \times 0.6 = 3,600 \)[/tex]

Result: 3,600

8. Expression 14: [tex]\( 19 \times d \div c \)[/tex]

- First, multiply 19 by [tex]\( d \)[/tex]: [tex]\( 19 \times 300 = 5,700 \)[/tex]
- Then, divide the result by [tex]\( c \)[/tex]: [tex]\( \frac{5,700}{0.6} = 9,500 \)[/tex]

Result: 9,500

9. Expression 15: [tex]\( \frac{150 \times c}{d} \)[/tex]

- First, multiply 150 by [tex]\( c \)[/tex]: [tex]\( 150 \times 0.6 = 90 \)[/tex]
- Then, divide the result by [tex]\( d \)[/tex]: [tex]\( \frac{90}{300} = 0.3 \)[/tex]

Result: 0.3

10. Expression 16: [tex]\( \frac{c + d}{75} \)[/tex]

- First, add [tex]\( c \)[/tex] and [tex]\( d \)[/tex]: [tex]\( 0.6 + 300 = 300.6 \)[/tex]
- Then, divide the result by 75: [tex]\( \frac{300.6}{75} = 4.008 \)[/tex]

Result: 4.008

11. Expression 17: [tex]\( c \cdot 500 - d \)[/tex]

- First, multiply [tex]\( c \)[/tex] by 500: [tex]\( 0.6 \times 500 = 300 \)[/tex]
- Then, subtract [tex]\( d \)[/tex]: [tex]\( 300 - 300 = 0 \)[/tex]

Result: 0.0

12. Expression 18: [tex]\( (d-c) \times 400 \)[/tex]

- First, subtract [tex]\( c \)[/tex] from [tex]\( d \)[/tex]: [tex]\( 300 - 0.6 = 299.4 \)[/tex]
- Then, multiply the result by 400: [tex]\( 299.4 \times 400 = 119,760 \)[/tex]

Result: 119,760

These are the evaluated results for each expression.