College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Divide the polynomial [tex](5x^3 - 25x^2 + 38x - 26)[/tex] by [tex](x - 3)[/tex].

Answer :

To solve the polynomial division [tex]\((5x^3 - 25x^2 + 38x - 26) \div (x - 3)\)[/tex], we can use long division for polynomials. Here is a step-by-step explanation:

1. Set up the division: Write the dividend [tex]\(5x^3 - 25x^2 + 38x - 26\)[/tex] and the divisor [tex]\(x - 3\)[/tex].

2. Divide the leading terms: Divide the leading term of the dividend, [tex]\(5x^3\)[/tex], by the leading term of the divisor, [tex]\(x\)[/tex]. This gives you [tex]\(5x^2\)[/tex].

3. Multiply and subtract:
- Multiply [tex]\(5x^2\)[/tex] by the divisor [tex]\(x - 3\)[/tex] to get [tex]\(5x^3 - 15x^2\)[/tex].
- Subtract this from the original polynomial to get a new polynomial: [tex]\(-25x^2 - (5x^3 - 15x^2) = -10x^2\)[/tex].

4. Bring down the next term: Bring down the next term from the original polynomial, which is [tex]\(+38x\)[/tex], to combine it with the [tex]\(-10x^2\)[/tex], resulting in [tex]\(-10x^2 + 38x\)[/tex].

5. Repeat the process:
- Divide the leading term [tex]\(-10x^2\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex], giving [tex]\(-10x\)[/tex].
- Multiply [tex]\(-10x\)[/tex] by [tex]\(x - 3\)[/tex] to get [tex]\(-10x^2 + 30x\)[/tex].
- Subtract this from the current polynomial: [tex]\(38x - ( -10x^2 + 30x) = 8x\)[/tex].

6. Bring down the last term: Bring down [tex]\(-26\)[/tex] to the current expression [tex]\(8x\)[/tex], resulting in [tex]\(8x - 26\)[/tex].

7. Final division:
- Divide the leading term [tex]\(8x\)[/tex] by the leading term of the divisor [tex]\(x\)[/tex], resulting in [tex]\(8\)[/tex].
- Multiply [tex]\(8\)[/tex] by [tex]\(x - 3\)[/tex] to get [tex]\(8x - 24\)[/tex].
- Subtract this from [tex]\(8x - 26\)[/tex] to get a remainder of [tex]\(-2\)[/tex].

Hence, after performing the division, the quotient is [tex]\(5x^2 - 10x + 8\)[/tex], and the remainder is [tex]\(-2\)[/tex].

So, the result of dividing [tex]\((5x^3 - 25x^2 + 38x - 26)\)[/tex] by [tex]\((x - 3)\)[/tex] is a quotient of [tex]\(5x^2 - 10x + 8\)[/tex] and a remainder of [tex]\(-2\)[/tex].