Answer :
To solve the problem of subtracting expressions B, C, and D from expression A, we follow these steps:
1. List the given expressions:
- Expression A: [tex]\( 8 x^7 \sqrt{26} \)[/tex]
- Expression B: [tex]\( 9 x^7 \sqrt{10} \)[/tex]
- Expression C: [tex]\( 103 x^7 \sqrt{13 x} \)[/tex]
- Expression D: [tex]\( 3 x^7 \sqrt{13} \)[/tex]
2. Set up the subtraction:
[tex]\[
8 x^7 \sqrt{26} - \left(9 x^7 \sqrt{10} + 103 x^7 \sqrt{13 x} + 3 x^7 \sqrt{13}\right)
\][/tex]
3. Distribute the negative sign and combine like terms:
[tex]\[
8 x^7 \sqrt{26} - 9 x^7 \sqrt{10} - 103 x^7 \sqrt{13 x} - 3 x^7 \sqrt{13}
\][/tex]
4. Write the result in a simplified form:
Each term is combined accordingly, keeping the respective coefficients, exponents, and radicals unchanged.
Thus, the final result of the subtraction is:
[tex]\[
-103 x^7 \sqrt{13 x} - 9 x^7 \sqrt{10} - 3 x^7 \sqrt{13} + 8 x^7 \sqrt{26}
\][/tex]
1. List the given expressions:
- Expression A: [tex]\( 8 x^7 \sqrt{26} \)[/tex]
- Expression B: [tex]\( 9 x^7 \sqrt{10} \)[/tex]
- Expression C: [tex]\( 103 x^7 \sqrt{13 x} \)[/tex]
- Expression D: [tex]\( 3 x^7 \sqrt{13} \)[/tex]
2. Set up the subtraction:
[tex]\[
8 x^7 \sqrt{26} - \left(9 x^7 \sqrt{10} + 103 x^7 \sqrt{13 x} + 3 x^7 \sqrt{13}\right)
\][/tex]
3. Distribute the negative sign and combine like terms:
[tex]\[
8 x^7 \sqrt{26} - 9 x^7 \sqrt{10} - 103 x^7 \sqrt{13 x} - 3 x^7 \sqrt{13}
\][/tex]
4. Write the result in a simplified form:
Each term is combined accordingly, keeping the respective coefficients, exponents, and radicals unchanged.
Thus, the final result of the subtraction is:
[tex]\[
-103 x^7 \sqrt{13 x} - 9 x^7 \sqrt{10} - 3 x^7 \sqrt{13} + 8 x^7 \sqrt{26}
\][/tex]