Answer :
To divide the polynomial [tex]\(36x^5 - 44x^4 - 28x^3\)[/tex] by [tex]\(4x^2\)[/tex], we will divide each term of the numerator by the denominator and simplify.
1. First Term:
- Divide [tex]\(36x^5\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
\frac{36x^5}{4x^2} = 9x^{5-2} = 9x^3
\][/tex]
2. Second Term:
- Divide [tex]\(-44x^4\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
\frac{-44x^4}{4x^2} = -11x^{4-2} = -11x^2
\][/tex]
3. Third Term:
- Divide [tex]\(-28x^3\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
\frac{-28x^3}{4x^2} = -7x^{3-2} = -7x
\][/tex]
Combining these simplified terms, we get the result:
[tex]\[
9x^3 - 11x^2 - 7x
\][/tex]
So, the correct answer is [tex]\(9x^3 - 11x^2 - 7x\)[/tex], which corresponds to the option:
[tex]\[
\boxed{9x^3 - 11x^2 - 7x}
\][/tex]
1. First Term:
- Divide [tex]\(36x^5\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
\frac{36x^5}{4x^2} = 9x^{5-2} = 9x^3
\][/tex]
2. Second Term:
- Divide [tex]\(-44x^4\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
\frac{-44x^4}{4x^2} = -11x^{4-2} = -11x^2
\][/tex]
3. Third Term:
- Divide [tex]\(-28x^3\)[/tex] by [tex]\(4x^2\)[/tex]:
[tex]\[
\frac{-28x^3}{4x^2} = -7x^{3-2} = -7x
\][/tex]
Combining these simplified terms, we get the result:
[tex]\[
9x^3 - 11x^2 - 7x
\][/tex]
So, the correct answer is [tex]\(9x^3 - 11x^2 - 7x\)[/tex], which corresponds to the option:
[tex]\[
\boxed{9x^3 - 11x^2 - 7x}
\][/tex]