High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Determine the pH at the equivalence (stoichiometric) point in the titration of 39.3 mL of [tex]$0.259 \, \text{M} \, \text{CH}_3\text{NH}_2$[/tex] with [tex]$0.166 \, \text{M} \, \text{HCl}$[/tex].

At [tex]$25^{\circ} \text{C}$[/tex], the [tex]$K_{b}$[/tex] of methylamine is [tex]$3.6 \times 10^{-4}$[/tex].

Answer :

To determine the pH at the equivalence point in the titration of methylamine ([tex]\(CH_3NH_2\)[/tex]) with hydrochloric acid (HCl), you can follow these steps:

1. Calculate Moles of [tex]\(CH_3NH_2\)[/tex]:
- Volume of [tex]\(CH_3NH_2\)[/tex] solution = 39.3 mL = 0.0393 L
- Molarity of [tex]\(CH_3NH_2\)[/tex] = 0.259 M
- Moles of [tex]\(CH_3NH_2\)[/tex] = Volume (L) × Molarity (mol/L) = 0.0393 L × 0.259 mol/L = 0.0101817 moles

2. Equivalence Point:
- At the equivalence point, the moles of [tex]\(CH_3NH_2\)[/tex] will equal the moles of HCl added.
- Molarity of HCl = 0.166 M
- Volume of HCl needed = Moles of [tex]\(CH_3NH_2\)[/tex] / Molarity of HCl = 0.0101817 moles / 0.166 M = 0.0613175 L or 61.3175 mL

3. Concentration of Conjugate Acid ([tex]\(CH_3NH_3^+\)[/tex]) at Equivalence Point:
- At the equivalence point, all [tex]\(CH_3NH_2\)[/tex] is converted to [tex]\(CH_3NH_3^+\)[/tex].
- Total volume = Volume of [tex]\(CH_3NH_2\)[/tex] + Volume of HCl = 39.3 mL + 61.3175 mL = 100.6175 mL or 0.1006175 L
- Concentration of [tex]\(CH_3NH_3^+\)[/tex] = Moles of [tex]\(CH_3NH_2\)[/tex] / Total Volume (L) = 0.0101817 moles / 0.1006175 L = 0.101162 M

4. Calculate [tex]\(K_a\)[/tex] of the Conjugate Acid:
- Given [tex]\(K_b\)[/tex] of [tex]\(CH_3NH_2\)[/tex] is [tex]\(3.6 \times 10^{-4}\)[/tex].
- [tex]\(K_w\)[/tex] (ion product of water) = [tex]\(1.0 \times 10^{-14}\)[/tex].
- [tex]\(K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{3.6 \times 10^{-4}} = 2.77778 \times 10^{-11}\)[/tex].

5. Calculate [H[tex]\(^+\)[/tex]] Concentration:
- Use the formula [H[tex]\(^+\)[/tex]] = [tex]\(\sqrt{K_a \times [CH_3NH_3^+]}\)[/tex].
- [H[tex]\(^+\)[/tex]] = [tex]\(\sqrt{2.77778 \times 10^{-11} \times 0.101162}\)[/tex] = [tex]\(1.67632 \times 10^{-6}\)[/tex] M

6. Calculate the pH:
- pH = [tex]\(-\log_{10}([H^+])\)[/tex].
- pH = [tex]\(-\log_{10}(1.67632 \times 10^{-6}) \approx 5.776\)[/tex].

Therefore, the pH at the equivalence point in this titration is approximately 5.776.