College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Consider the function [tex]f(x) = 12x^5 + 45x^4 - 360x^3 + 3[/tex].

[tex]f(x)[/tex] has inflection points at (reading from left to right) [tex]x = D, E[/tex], and [tex]F[/tex], where:

- [tex]D[/tex] is [tex]\square[/tex]
- [tex]E[/tex] is [tex]\square[/tex]
- [tex]F[/tex] is [tex]\square[/tex]

For each of the following intervals, determine whether [tex]f(x)[/tex] is concave up or concave down:

1. [tex](-\infty, D):[/tex] Select an answer [tex]\checkmark[/tex]
2. [tex](D, E):[/tex] Select an answer [tex]\checkmark[/tex]
3. [tex](E, F):[/tex] Select an answer [tex]\checkmark[/tex]
4. [tex](F, \infty):[/tex] Select an answer [tex]\checkmark[/tex]

Answer :

We begin with the function
[tex]$$
f(x) = 12x^5 + 45x^4 - 360x^3 + 3.
$$[/tex]

Step 1. Find the second derivative.

First, compute the first derivative:
[tex]$$
f'(x) = \frac{d}{dx}(12x^5) + \frac{d}{dx}(45x^4) - \frac{d}{dx}(360x^3) + \frac{d}{dx}(3) = 60x^4 + 180x^3 - 1080x^2.
$$[/tex]

Now, differentiate again to obtain the second derivative:
[tex]$$
f''(x) = \frac{d}{dx}(60x^4) + \frac{d}{dx}(180x^3) - \frac{d}{dx}(1080x^2) = 240x^3 + 540x^2 - 2160x.
$$[/tex]

Step 2. Factor the second derivative to find the potential inflection points.

Factor out the common term [tex]$60x$[/tex]:
[tex]$$
f''(x) = 60x\left(4x^2 + 9x - 36\right).
$$[/tex]

Set [tex]$f''(x) = 0$[/tex]:
[tex]$$
60x\left(4x^2 + 9x - 36\right) = 0.
$$[/tex]

This equation is satisfied when
1. [tex]$$60x = 0 \quad \Longrightarrow \quad x=0,$$[/tex]
2. or when
[tex]$$
4x^2 + 9x - 36 = 0.
$$[/tex]

Solve the quadratic equation with the quadratic formula:
[tex]$$
x = \frac{-9 \pm \sqrt{9^2 - 4\cdot4\cdot(-36)}}{2\cdot4} = \frac{-9 \pm \sqrt{81 + 576}}{8} = \frac{-9 \pm \sqrt{657}}{8}.
$$[/tex]

Notice that [tex]$\sqrt{657}$[/tex] can be expressed as [tex]$3\sqrt{73}$[/tex] because [tex]$657 = 9 \cdot 73$[/tex]. Hence, the two solutions are:
[tex]$$
x = \frac{-9 - 3\sqrt{73}}{8} \quad \text{and} \quad x = \frac{-9 + 3\sqrt{73}}{8}.
$$[/tex]

Step 3. Identify the inflection points.

Label the inflection points in order from left to right as [tex]$D$[/tex], [tex]$E$[/tex], and [tex]$F$[/tex]. Comparing the three roots:
- The smallest (leftmost) is
[tex]$$
D = \frac{-9 - 3\sqrt{73}}{8}.
$$[/tex]
- The middle value is
[tex]$$
E = 0.
$$[/tex]
- The largest (rightmost) is
[tex]$$
F = \frac{-9 + 3\sqrt{73}}{8}.
$$[/tex]

For approximation purposes, we have:
[tex]$$
D \approx -4.329,\quad E = 0,\quad F \approx 2.079.
$$[/tex]

Step 4. Determine the concavity on each interval.

The sign of [tex]$f''(x)$[/tex] tells us the concavity:
- If [tex]$f''(x) > 0$[/tex] then [tex]$f(x)$[/tex] is concave up.
- If [tex]$f''(x) < 0$[/tex] then [tex]$f(x)$[/tex] is concave down.

Examine the four intervals determined by [tex]$D$[/tex], [tex]$E$[/tex], and [tex]$F$[/tex]:

1. For the interval [tex]$(-\infty, D)$[/tex] (values less than approximately [tex]$-4.329$[/tex]), choose a test point (for example, [tex]$x = -5$[/tex]). The evaluation shows [tex]$f''(x) < 0$[/tex], meaning the graph is concave down on [tex]$(-\infty, D)$[/tex].

2. For the interval [tex]$(D, E)$[/tex] (values between approximately [tex]$-4.329$[/tex] and [tex]$0$[/tex]), choose a test point (for example, [tex]$x = -2$[/tex]). The evaluation shows [tex]$f''(x) > 0$[/tex], meaning the graph is concave up on [tex]$(D, E)$[/tex].

3. For the interval [tex]$(E, F)$[/tex] (values between [tex]$0$[/tex] and approximately [tex]$2.079$[/tex]), choose a test point (for example, [tex]$x = 1$[/tex]). The evaluation shows [tex]$f''(x) < 0$[/tex], meaning the graph is concave down on [tex]$(E, F)$[/tex].

4. For the interval [tex]$(F, \infty)$[/tex] (values greater than approximately [tex]$2.079$[/tex]), choose a test point (for example, [tex]$x = 3$[/tex]). The evaluation shows [tex]$f''(x) > 0$[/tex], meaning the graph is concave up on [tex]$(F, \infty)$[/tex].

Final Answers:

Inflection points:
[tex]$$
D = \frac{-9 - 3\sqrt{73}}{8},\quad E = 0,\quad F = \frac{-9 + 3\sqrt{73}}{8}.
$$[/tex]

Concavity:
- On [tex]$(-\infty, D)$[/tex]: Concave Down.
- On [tex]$(D, E)$[/tex]: Concave Up.
- On [tex]$(E, F)$[/tex]: Concave Down.
- On [tex]$(F, \infty)$[/tex]: Concave Up.