College

Consider the following geometric sequence:

[tex]\[ 115, 690, 4,140, 24,840, \ldots \][/tex]

What is the explicit formula for this sequence?

A. [tex]\[ a_n = 115 \cdot \left(\frac{1}{6}\right)^{(n-1)} \][/tex]

B. [tex]\[ a_n = 115 \cdot (-6)^{(n-1)} \][/tex]

C. [tex]\[ a_n = 115 \cdot (5)^{(n-1)} \][/tex]

D. [tex]\[ a_n = 115 \cdot (6)^{(n-1)} \][/tex]

Answer :

To find the explicit formula for the given geometric sequence, we need to identify the common ratio and the first term.

The sequence given is: [tex]\(115, 690, 4140, 24840, \ldots\)[/tex]

1. Identify the first term ([tex]\(a_1\)[/tex]):

The first term of the sequence is [tex]\(115\)[/tex].

2. Find the common ratio ([tex]\(r\)[/tex]):

To find the common ratio of a geometric sequence, divide the second term by the first term:
[tex]\[
r = \frac{690}{115} = 6
\][/tex]

3. Form the explicit formula:

The explicit formula for a geometric sequence can be written as:
[tex]\[
a_n = a_1 \cdot r^{(n-1)}
\][/tex]
Plugging in the values we found, [tex]\(a_1 = 115\)[/tex] and [tex]\(r = 6\)[/tex]:
[tex]\[
a_n = 115 \cdot 6^{(n-1)}
\][/tex]

4. Verify with given options:

Compare the expression we found with the given options:
- Option 1: [tex]\(a_n=115 \cdot\left(\frac{1}{6}\right)^{(n-1)}\)[/tex]
- Option 2: [tex]\(a_n=115 \cdot(-6)^{(n-1)}\)[/tex]
- Option 3: [tex]\(a_n=115 \cdot(5)^{(n-1)}\)[/tex]
- Option 4: [tex]\(a_n=115 \cdot(6)^{(n-1)}\)[/tex]

Our formula matches Option 4.

Therefore, the explicit formula for the sequence is [tex]\(a_n=115 \cdot(6)^{(n-1)}\)[/tex].