Answer :
To calculate the value of [tex]\( Q_p \)[/tex] for the equilibrium system given by the reaction:
[tex]\[ \text{CCl}_4(g) \rightleftharpoons \text{C}(s) + 2 \text{Cl}_2(g) \][/tex]
we follow these steps:
1. Identify the relevant components for the reaction quotient [tex]\( Q_p \)[/tex].
For gases, [tex]\( Q_p \)[/tex] is calculated using the partial pressures. The expression for [tex]\( Q_p \)[/tex] based on the balanced chemical equation is:
[tex]\[
Q_p = \frac{(P_{\text{Cl}_2})^2}{P_{\text{CCl}_4}}
\][/tex]
Note: Since carbon (C) is in solid form, it is not included in the expression for [tex]\( Q_p \)[/tex].
2. Substitute the given values into the expression.
- The partial pressure of [tex]\(\text{CCl}_4\)[/tex], [tex]\( P_{\text{CCl}_4} \)[/tex], is 3.51 atm.
- The partial pressure of [tex]\(\text{Cl}_2\)[/tex], [tex]\( P_{\text{Cl}_2} \)[/tex], is 2.09 atm.
Plug these values into the expression for [tex]\( Q_p \)[/tex]:
[tex]\[
Q_p = \frac{(2.09 \, \text{atm})^2}{3.51 \, \text{atm}}
\][/tex]
3. Calculate the numerical value of [tex]\( Q_p \)[/tex].
[tex]\[
Q_p = \frac{4.3681 \, \text{atm}^2}{3.51 \, \text{atm}}
\][/tex]
[tex]\[
Q_p \approx 1.244
\][/tex]
So, the value of [tex]\( Q_p \)[/tex] for the given reaction conditions is approximately 1.244.
[tex]\[ \text{CCl}_4(g) \rightleftharpoons \text{C}(s) + 2 \text{Cl}_2(g) \][/tex]
we follow these steps:
1. Identify the relevant components for the reaction quotient [tex]\( Q_p \)[/tex].
For gases, [tex]\( Q_p \)[/tex] is calculated using the partial pressures. The expression for [tex]\( Q_p \)[/tex] based on the balanced chemical equation is:
[tex]\[
Q_p = \frac{(P_{\text{Cl}_2})^2}{P_{\text{CCl}_4}}
\][/tex]
Note: Since carbon (C) is in solid form, it is not included in the expression for [tex]\( Q_p \)[/tex].
2. Substitute the given values into the expression.
- The partial pressure of [tex]\(\text{CCl}_4\)[/tex], [tex]\( P_{\text{CCl}_4} \)[/tex], is 3.51 atm.
- The partial pressure of [tex]\(\text{Cl}_2\)[/tex], [tex]\( P_{\text{Cl}_2} \)[/tex], is 2.09 atm.
Plug these values into the expression for [tex]\( Q_p \)[/tex]:
[tex]\[
Q_p = \frac{(2.09 \, \text{atm})^2}{3.51 \, \text{atm}}
\][/tex]
3. Calculate the numerical value of [tex]\( Q_p \)[/tex].
[tex]\[
Q_p = \frac{4.3681 \, \text{atm}^2}{3.51 \, \text{atm}}
\][/tex]
[tex]\[
Q_p \approx 1.244
\][/tex]
So, the value of [tex]\( Q_p \)[/tex] for the given reaction conditions is approximately 1.244.