College

Compute the following:

[tex]\[ 2.35 \cdot \frac{2}{3} = \][/tex]

A. [tex]\(\frac{7}{30}\)[/tex]
B. [tex]\(\frac{7}{15}\)[/tex]
C. [tex]\(\frac{27}{30}\)[/tex]
D. [tex]\(\frac{47}{30}\)[/tex]

Answer :

To solve the expression [tex]\(2.35 \cdot \frac{2}{3}\)[/tex], we will follow these steps:

1. Convert the decimal to a fraction: The number [tex]\(2.35\)[/tex] can be written as a fraction. Recall that [tex]\(2.35\)[/tex] means [tex]\(2 + 0.35\)[/tex].

- [tex]\(2.35\)[/tex] can be broken into [tex]\(2 + 0.35\)[/tex].
- The fraction equivalent of [tex]\(0.35\)[/tex] can be written as [tex]\( \frac{35}{100} \)[/tex].

2. Simplify the fraction [tex]\( \frac{35}{100} \)[/tex]:
[tex]\[
\frac{35}{100} = \frac{7}{20} \quad (\text{dividing both numerator and denominator by 5})
\][/tex]

3. Combine the fractional part with the whole number part:
[tex]\[
2.35 = 2 + \frac{7}{20} = \frac{40}{20} + \frac{7}{20} = \frac{47}{20}
\][/tex]

4. Multiply the given fractions:
[tex]\[
2.35 \cdot \frac{2}{3} = \frac{47}{20} \cdot \frac{2}{3}
\][/tex]

5. Multiply the numerators and the denominators:
[tex]\[
\frac{47 \cdot 2}{20 \cdot 3} = \frac{94}{60}
\][/tex]

6. Simplify the fraction [tex]\(\frac{94}{60}\)[/tex]:
- Find the greatest common divisor (GCD) of 94 and 60, which is 2.
- Divide both the numerator and the denominator by their GCD:

[tex]\[
\frac{94}{60} = \frac{94 \div 2}{60 \div 2} = \frac{47}{30}
\][/tex]

Therefore, the simplified result of [tex]\( 2.35 \cdot \frac{2}{3} \)[/tex] is [tex]\( \frac{47}{30} \)[/tex].

Thus, the correct answer is:
[tex]\[
\boxed{\frac{47}{30}}
\][/tex]