College

Compare the numbers using [tex] > [/tex], [tex] < [/tex], or [tex] = [/tex].

1) 38.1 [tex] \qquad [/tex] 3.29

2) 8.2 [tex] \qquad [/tex] 73.2

3) 0.43 [tex] \qquad [/tex] 0.95

4) 8.5 [tex] \qquad [/tex] 37.3

Answer :

Let's compare each pair of decimals by looking at the value of the digits from left to right.

1) Compare [tex]$38.1$[/tex] and [tex]$3.29$[/tex]:
- First, compare the whole number parts: [tex]$38$[/tex] versus [tex]$3$[/tex].
- Since [tex]$38$[/tex] is much larger than [tex]$3$[/tex], we conclude that
[tex]$$38.1 > 3.29.$$[/tex]

2) Compare [tex]$8.2$[/tex] and [tex]$73.2$[/tex]:
- Compare the whole number parts: [tex]$8$[/tex] versus [tex]$73$[/tex].
- Because [tex]$8$[/tex] is less than [tex]$73$[/tex], it follows that
[tex]$$8.2 < 73.2.$$[/tex]

3) Compare [tex]$0.43$[/tex] and [tex]$0.95$[/tex]:
- The whole number part for both numbers is [tex]$0$[/tex], so we look at the decimal parts.
- Compare the tenths place: [tex]$4$[/tex] in [tex]$0.43$[/tex] versus [tex]$9$[/tex] in [tex]$0.95$[/tex].
- Since [tex]$4$[/tex] is less than [tex]$9$[/tex], we get
[tex]$$0.43 < 0.95.$$[/tex]

4) Compare [tex]$8.5$[/tex] and [tex]$37.3$[/tex]:
- Compare the whole number parts: [tex]$8$[/tex] versus [tex]$37$[/tex].
- Because [tex]$8$[/tex] is less than [tex]$37$[/tex], we conclude that
[tex]$$8.5 < 37.3.$$[/tex]

Thus, the comparisons are:

[tex]$$38.1 > 3.29,$$[/tex]
[tex]$$8.2 < 73.2,$$[/tex]
[tex]$$0.43 < 0.95,$$[/tex]
[tex]$$8.5 < 37.3.$$[/tex]