College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Collect like terms and write in descending order:

[tex]\[ \left(6x^5 + 3x^7 - 5 - 9x^6\right) - \left(-3 - 2x^6 + 7x^7 + 4x^5\right) \][/tex]

Answer :

To solve the problem, we need to simplify the expression by combining like terms and then write it in descending order of powers of [tex]\( x \)[/tex].

Given expression:
[tex]\[
\left(6x^5 + 3x^7 - 5 - 9x^6\right) - \left(-3 - 2x^6 + 7x^7 + 4x^5\right)
\][/tex]

First, eliminate the parentheses by distributing the negative sign through the second expression:
[tex]\[
6x^5 + 3x^7 - 5 - 9x^6 - (-3) - (-2x^6) - (7x^7) - (4x^5)
\][/tex]

Simplify the expression:
[tex]\[
6x^5 + 3x^7 - 5 - 9x^6 + 3 + 2x^6 - 7x^7 - 4x^5
\][/tex]

Next, combine like terms:

Combine the [tex]\(x^7\)[/tex] terms:
[tex]\[
3x^7 - 7x^7 = -4x^7
\][/tex]

Combine the [tex]\(x^6\)[/tex] terms:
[tex]\[
-9x^6 + 2x^6 = -7x^6
\][/tex]

Combine the [tex]\(x^5\)[/tex] terms:
[tex]\[
6x^5 - 4x^5 = 2x^5
\][/tex]

Combine the constant terms:
[tex]\[
-5 + 3 = -2
\][/tex]

Now, write the combined terms in a single expression in descending order of powers of [tex]\( x \)[/tex]:
[tex]\[
-4x^7 - 7x^6 + 2x^5 - 2
\][/tex]

So the simplified expression, in descending order, is:
[tex]\[
\boxed{-4x^7 - 7x^6 + 2x^5 - 2}
\][/tex]