Answer :
We know that the formula for the circumference of a circle is
[tex]$$
C = \pi d,
$$[/tex]
where [tex]$C$[/tex] is the circumference and [tex]$d$[/tex] is the diameter. To find the diameter, we rearrange the formula:
[tex]$$
d = \frac{C}{\pi}.
$$[/tex]
Given that the circumference is [tex]$44$[/tex] inches, we substitute into the formula:
[tex]$$
d = \frac{44}{\pi}.
$$[/tex]
Approximating [tex]$\pi \approx 3.14$[/tex] (for instance), we get:
[tex]$$
d \approx \frac{44}{3.14} \approx 14.0056 \text{ inches}.
$$[/tex]
Rounding [tex]$14.0056$[/tex] to the nearest whole number gives approximately [tex]$14$[/tex] inches.
Thus, the approximate length of the diameter is [tex]$\boxed{14 \text{ in}}$[/tex].
[tex]$$
C = \pi d,
$$[/tex]
where [tex]$C$[/tex] is the circumference and [tex]$d$[/tex] is the diameter. To find the diameter, we rearrange the formula:
[tex]$$
d = \frac{C}{\pi}.
$$[/tex]
Given that the circumference is [tex]$44$[/tex] inches, we substitute into the formula:
[tex]$$
d = \frac{44}{\pi}.
$$[/tex]
Approximating [tex]$\pi \approx 3.14$[/tex] (for instance), we get:
[tex]$$
d \approx \frac{44}{3.14} \approx 14.0056 \text{ inches}.
$$[/tex]
Rounding [tex]$14.0056$[/tex] to the nearest whole number gives approximately [tex]$14$[/tex] inches.
Thus, the approximate length of the diameter is [tex]$\boxed{14 \text{ in}}$[/tex].