High School

Choose the fraction that is equivalent to [tex]\frac{9}{10}[/tex].

A. [tex]\frac{27}{30}[/tex]

B. [tex]\frac{18}{30}[/tex]

C. [tex]\frac{36}{40}[/tex]

Answer :

To determine which of the given fractions is equivalent to [tex]\(\frac{9}{10}\)[/tex], let's analyze each option provided.

### Option A: [tex]\(\frac{27}{40}\)[/tex]

First, convert [tex]\(\frac{27}{40}\)[/tex] to a decimal to compare it with [tex]\(\frac{9}{10}\)[/tex]:
[tex]\[
\frac{27}{40} = 0.675
\][/tex]

The fraction [tex]\( \frac{9}{10} \)[/tex] as a decimal is:
[tex]\[
\frac{9}{10} = 0.9
\][/tex]

Comparing [tex]\(0.675\)[/tex] and [tex]\(0.9\)[/tex], we see they are not equal. Therefore, [tex]\(\frac{27}{40}\)[/tex] is not equivalent to [tex]\(\frac{9}{10}\)[/tex].

### Option B: [tex]\(\frac{18}{30}\)[/tex]

Next, convert [tex]\(\frac{18}{30}\)[/tex] to a decimal:
[tex]\[
\frac{18}{30} = 0.6
\][/tex]

Again, compare it to the decimal value of [tex]\(\frac{9}{10}\)[/tex]:
[tex]\[
\frac{9}{10} = 0.9
\][/tex]

Here, [tex]\(0.6\)[/tex] and [tex]\(0.9\)[/tex] are not equal. Thus, [tex]\(\frac{18}{30}\)[/tex] is also not equivalent to [tex]\(\frac{9}{10}\)[/tex].

### Option C: [tex]\(\frac{36}{40}\)[/tex]

Finally, convert [tex]\(\frac{36}{40}\)[/tex] to a decimal:
[tex]\[
\frac{36}{40} = 0.9
\][/tex]

Compare it to the decimal value of [tex]\(\frac{9}{10}\)[/tex]:
[tex]\[
\frac{9}{10} = 0.9
\][/tex]

Since both are equal, [tex]\(\frac{36}{40}\)[/tex] is equivalent to [tex]\(\frac{9}{10}\)[/tex].

### Conclusion

After comparing all options, the fraction that is equivalent to [tex]\(\frac{9}{10}\)[/tex] is:
[tex]\[
\boxed{\frac{36}{40}}
\][/tex]