Answer :
Sure! Let's simplify the expression step-by-step:
We are given the expression:
[tex]\[
-4x^2(6x - 5x^2 - 5)
\][/tex]
We need to distribute [tex]\(-4x^2\)[/tex] across each term inside the parentheses:
1. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(6x\)[/tex]:
[tex]\[
-4x^2 \cdot 6x = -24x^3
\][/tex]
2. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-5x^2\)[/tex]:
[tex]\[
-4x^2 \cdot (-5x^2) = 20x^4
\][/tex]
3. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-5\)[/tex]:
[tex]\[
-4x^2 \cdot (-5) = 20x^2
\][/tex]
Now, let's combine all these results to write the simplified expression:
[tex]\[
20x^4 - 24x^3 + 20x^2
\][/tex]
Therefore, the correct simplification of the expression [tex]\(-4x^2(6x - 5x^2 - 5)\)[/tex] is:
[tex]\[
20x^4 - 24x^3 + 20x^2
\][/tex]
So, the correct choice from the given options is [tex]\(20x^4 - 24x^3 + 20x^2\)[/tex].
We are given the expression:
[tex]\[
-4x^2(6x - 5x^2 - 5)
\][/tex]
We need to distribute [tex]\(-4x^2\)[/tex] across each term inside the parentheses:
1. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(6x\)[/tex]:
[tex]\[
-4x^2 \cdot 6x = -24x^3
\][/tex]
2. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-5x^2\)[/tex]:
[tex]\[
-4x^2 \cdot (-5x^2) = 20x^4
\][/tex]
3. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-5\)[/tex]:
[tex]\[
-4x^2 \cdot (-5) = 20x^2
\][/tex]
Now, let's combine all these results to write the simplified expression:
[tex]\[
20x^4 - 24x^3 + 20x^2
\][/tex]
Therefore, the correct simplification of the expression [tex]\(-4x^2(6x - 5x^2 - 5)\)[/tex] is:
[tex]\[
20x^4 - 24x^3 + 20x^2
\][/tex]
So, the correct choice from the given options is [tex]\(20x^4 - 24x^3 + 20x^2\)[/tex].