Answer :
To simplify
[tex]$$
\left(4x^3 - 3x - 7\right) + \left(3x^3 + 5x + 3\right),
$$[/tex]
we start by combining like terms.
1. For the [tex]$x^3$[/tex] terms:
[tex]$$
4x^3 + 3x^3 = 7x^3.
$$[/tex]
2. For the [tex]$x$[/tex] terms:
[tex]$$
-3x + 5x = 2x.
$$[/tex]
3. For the constant terms:
[tex]$$
-7 + 3 = -4.
$$[/tex]
Putting it all together, the simplified expression is:
[tex]$$
7x^3 + 2x - 4.
$$[/tex]
Thus, the correct simplification is
[tex]$$
\boxed{7x^3 + 2x - 4}.
$$[/tex]
[tex]$$
\left(4x^3 - 3x - 7\right) + \left(3x^3 + 5x + 3\right),
$$[/tex]
we start by combining like terms.
1. For the [tex]$x^3$[/tex] terms:
[tex]$$
4x^3 + 3x^3 = 7x^3.
$$[/tex]
2. For the [tex]$x$[/tex] terms:
[tex]$$
-3x + 5x = 2x.
$$[/tex]
3. For the constant terms:
[tex]$$
-7 + 3 = -4.
$$[/tex]
Putting it all together, the simplified expression is:
[tex]$$
7x^3 + 2x - 4.
$$[/tex]
Thus, the correct simplification is
[tex]$$
\boxed{7x^3 + 2x - 4}.
$$[/tex]