College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Choose the correct simplification of \((6x - 5)(2x^2 - 3x - 6)\).

A. \(12x^3 + 28x^2 + 21x + 30\)

B. \(12x^3 - 28x^2 - 21x + 30\)

C. \(12x^3 + 28x^2 - 21x + 30\)

D. \(12x^3 - 28x^2 - 21x - 30\)

Answer :

We want to simplify
$$
(6x - 5)\left(2x^2 - 3x - 6\right).
$$

**Step 1: Distribute each term from the first polynomial to each term in the second polynomial.**

Multiply the term $6x$ by each term in the second polynomial:
\[
\begin{aligned}
6x \cdot 2x^2 &= 12x^3,\\[1mm]
6x \cdot (-3x) &= -18x^2,\\[1mm]
6x \cdot (-6) &= -36x.
\end{aligned}
\]

Next, multiply the term $-5$ by each term in the second polynomial:
\[
\begin{aligned}
-5 \cdot 2x^2 &= -10x^2,\\[1mm]
-5 \cdot (-3x) &= 15x,\\[1mm]
-5 \cdot (-6) &= 30.
\end{aligned}
\]

**Step 2: Combine like terms.**

Now, add the results from both distributions:

- The $x^3$ term:
$$
12x^3 \quad (\text{only one term}).
$$

- The $x^2$ terms:
$$
-18x^2 + (-10x^2) = -28x^2.
$$

- The $x$ terms:
$$
-36x + 15x = -21x.
$$

- The constant term:
$$
30.
$$

**Step 3: Write the final simplified expression.**

The simplified expression is:
$$
12x^3 - 28x^2 - 21x + 30.
$$

**Conclusion:**

The correct answer is
$$
\boxed{12x^3 - 28x^2 - 21x + 30}.
$$