College

For each expression in the row, select an equivalent expression from one of the columns.

[tex]
\[
\begin{array}{ll}
-21 + 94 & 94 - 21 \\
94 - (-94) & \\
94 - (-21) & \\
\end{array}
\]
[/tex]

Answer :

Sure! Let's break down each expression step-by-step to find the equivalent expressions:

1. Expression: [tex]\(-21 + 94\)[/tex]

To solve this, simply perform the addition:
[tex]\[
-21 + 94 = 73
\][/tex]

Equivalent expression: [tex]\(94 - 21 \)[/tex]

Perform the subtraction:
[tex]\[
94 - 21 = 73
\][/tex]

So, [tex]\(-21 + 94\)[/tex] is equivalent to [tex]\(94 - 21\)[/tex], and both simplify to 73.

2. Expression: [tex]\(94 - (-94)\)[/tex]

When you subtract a negative number, it's the same as adding the positive version of that number:
[tex]\[
94 - (-94) = 94 + 94
\][/tex]

Simplify this:
[tex]\[
94 + 94 = 188
\][/tex]

So, [tex]\(94 - (-94)\)[/tex] simplifies to 188.

3. Expression: [tex]\(94 - (-21)\)[/tex]

Similar to the last one, subtracting a negative number is the same as adding:
[tex]\[
94 - (-21) = 94 + 21
\][/tex]

Simplify this:
[tex]\[
94 + 21 = 115
\][/tex]

So, [tex]\(94 - (-21)\)[/tex] simplifies to 115.

These steps illustrate finding equivalent expressions by using addition properties and simplifying each step.