College

Choose the correct simplification of \((4x - 3)(3x^2 - 4x - 3)\).

A. \(12x^3 + 25x^2 + 9\)
B. \(12x^3 - 25x^2 - 9\)
C. \(12x^3 + 25x^2 - 9\)
D. \(12x^3 - 25x^2 + 9\)

Answer :

[tex](4x - 3)(3x^2 - 4x - 3)[/tex]

[tex]=4x\cdot \:3x^2+4x\left(-4x\right)+4x\left(-3\right)-3\cdot \:3x^2-3\left(-4x\right)-3\left(-3\right)[/tex]

[tex]=4x\cdot \:3x^2-4x\cdot \:4x-4x\cdot \:3-3\cdot \:3x^2+3\cdot \:4x+3\cdot \:3[/tex]

[tex]\mathrm{Simplify}\:4x\cdot \:3x^2-4x\cdot \:4x-4x\cdot \:3-3\cdot \:3x^2+3\cdot \:4x+3\cdot \:3:\quad 12x^3-25x^2+9[/tex]

[tex]=12x^3-25x^2+9[/tex]

To simplify the given expression, multiply each term individually, combine like terms, and the correct answer is [tex]12x^3 - 25x^2 + 9.[/tex]

To simplify [tex](4x - 3)(3x^2 - 4x -3)[/tex]:

  1. Multiply each term of the first expression by each term of the second expression.
  2. Combine like terms.
  3. The correct simplification is [tex]12x^3 - 25x^2 + 9[/tex].