College

Calculate the future value using the formula:

[tex] \[ 20000\left(1+\frac{0.7}{12}\right)^{84} \] [/tex]

Answer :

We begin with the expression

[tex]$$
20000\left(1+\frac{0.7}{12}\right)^{84}.
$$[/tex]

Step 1. Calculate the Monthly Rate

The given rate is [tex]\(0.7\)[/tex]. When expressed as a monthly rate we have

[tex]$$
\text{monthly rate} = \frac{0.7}{12} \approx 0.05833.
$$[/tex]

Step 2. Compute the Base Term

The base inside the power is

[tex]$$
1 + \frac{0.7}{12} \approx 1 + 0.05833 = 1.05833.
$$[/tex]

Step 3. Evaluate the Exponentiation

The expression is raised to the power of [tex]\(84\)[/tex]. Thus we evaluate

[tex]$$
\left(1.05833\right)^{84} \approx 117.02749.
$$[/tex]

Step 4. Multiply by the Principal

Finally, multiplying by the principal value [tex]\(20000\)[/tex] gives

[tex]$$
20000 \times 117.02749 \approx 2340549.81.
$$[/tex]

Final Answer

The value of the expression

[tex]$$
20000\left(1+\frac{0.7}{12}\right)^{84}
$$[/tex]

is approximately

[tex]$$
2,\!340,\!549.81.
$$[/tex]