Answer :
We begin with the expression
[tex]$$
20000\left(1+\frac{0.7}{12}\right)^{84}.
$$[/tex]
Step 1. Calculate the Monthly Rate
The given rate is [tex]\(0.7\)[/tex]. When expressed as a monthly rate we have
[tex]$$
\text{monthly rate} = \frac{0.7}{12} \approx 0.05833.
$$[/tex]
Step 2. Compute the Base Term
The base inside the power is
[tex]$$
1 + \frac{0.7}{12} \approx 1 + 0.05833 = 1.05833.
$$[/tex]
Step 3. Evaluate the Exponentiation
The expression is raised to the power of [tex]\(84\)[/tex]. Thus we evaluate
[tex]$$
\left(1.05833\right)^{84} \approx 117.02749.
$$[/tex]
Step 4. Multiply by the Principal
Finally, multiplying by the principal value [tex]\(20000\)[/tex] gives
[tex]$$
20000 \times 117.02749 \approx 2340549.81.
$$[/tex]
Final Answer
The value of the expression
[tex]$$
20000\left(1+\frac{0.7}{12}\right)^{84}
$$[/tex]
is approximately
[tex]$$
2,\!340,\!549.81.
$$[/tex]
[tex]$$
20000\left(1+\frac{0.7}{12}\right)^{84}.
$$[/tex]
Step 1. Calculate the Monthly Rate
The given rate is [tex]\(0.7\)[/tex]. When expressed as a monthly rate we have
[tex]$$
\text{monthly rate} = \frac{0.7}{12} \approx 0.05833.
$$[/tex]
Step 2. Compute the Base Term
The base inside the power is
[tex]$$
1 + \frac{0.7}{12} \approx 1 + 0.05833 = 1.05833.
$$[/tex]
Step 3. Evaluate the Exponentiation
The expression is raised to the power of [tex]\(84\)[/tex]. Thus we evaluate
[tex]$$
\left(1.05833\right)^{84} \approx 117.02749.
$$[/tex]
Step 4. Multiply by the Principal
Finally, multiplying by the principal value [tex]\(20000\)[/tex] gives
[tex]$$
20000 \times 117.02749 \approx 2340549.81.
$$[/tex]
Final Answer
The value of the expression
[tex]$$
20000\left(1+\frac{0.7}{12}\right)^{84}
$$[/tex]
is approximately
[tex]$$
2,\!340,\!549.81.
$$[/tex]