Answer :
To solve
[tex]$$
2.35 \cdot \frac{2}{3},
$$[/tex]
we can follow these steps:
1. Write the decimal [tex]$2.35$[/tex] as a fraction. Since
[tex]$$
2.35=\frac{235}{100},
$$[/tex]
we can rewrite the product as
[tex]$$
\frac{235}{100} \cdot \frac{2}{3}.
$$[/tex]
2. Multiply the fractions by multiplying the numerators and denominators:
[tex]$$
\frac{235 \cdot 2}{100 \cdot 3} = \frac{470}{300}.
$$[/tex]
3. Simplify the fraction [tex]$\frac{470}{300}$[/tex]. Notice that both the numerator and the denominator are divisible by 10:
[tex]$$
\frac{470 \div 10}{300 \div 10} = \frac{47}{30}.
$$[/tex]
Thus, the final answer is
[tex]$$
\frac{47}{30}.
$$[/tex]
[tex]$$
2.35 \cdot \frac{2}{3},
$$[/tex]
we can follow these steps:
1. Write the decimal [tex]$2.35$[/tex] as a fraction. Since
[tex]$$
2.35=\frac{235}{100},
$$[/tex]
we can rewrite the product as
[tex]$$
\frac{235}{100} \cdot \frac{2}{3}.
$$[/tex]
2. Multiply the fractions by multiplying the numerators and denominators:
[tex]$$
\frac{235 \cdot 2}{100 \cdot 3} = \frac{470}{300}.
$$[/tex]
3. Simplify the fraction [tex]$\frac{470}{300}$[/tex]. Notice that both the numerator and the denominator are divisible by 10:
[tex]$$
\frac{470 \div 10}{300 \div 10} = \frac{47}{30}.
$$[/tex]
Thus, the final answer is
[tex]$$
\frac{47}{30}.
$$[/tex]