College

Calculate the expression:

[tex]\[ 12 \sqrt{17} - 8 \sqrt{17} \][/tex]

Working out:

Answer :

We start with the expression

[tex]$$12\sqrt{17} - 8\sqrt{17}.$$[/tex]

Notice that both terms contain the common factor [tex]$\sqrt{17}$[/tex]. This allows us to factor it out:

[tex]$$
12\sqrt{17} - 8\sqrt{17} = (12 - 8)\sqrt{17}.
$$[/tex]

Now, subtract the coefficients:

[tex]$$12 - 8 = 4.$$[/tex]

So, the expression simplifies to:

[tex]$$
(12 - 8)\sqrt{17} = 4\sqrt{17}.
$$[/tex]

If we evaluate this numerically, we find that

[tex]$$\sqrt{17} \approx 4.123105625617661,$$[/tex]

thus

[tex]$$
4\sqrt{17} \approx 4 \times 4.123105625617661 \approx 16.492422502470644.
$$[/tex]

Therefore, the final result is

[tex]$$\boxed{4\sqrt{17} \approx 16.49242250247064.}$$[/tex]