College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Calculate [tex]$g$[/tex] in the equation [tex]$T = 2 \pi \sqrt{\frac{L}{g}}$[/tex] given that [tex]$T = 1.57$[/tex] and [tex]$L = 2$[/tex].

Answer :

Sure, let's solve for [tex]\( g \)[/tex] in the equation [tex]\( T = 2\pi \sqrt{\frac{L}{g}} \)[/tex] given that [tex]\( T = 1.57 \)[/tex] and [tex]\( L = 2 \)[/tex].

1. Rewrite the formula:
[tex]\[
T = 2\pi \sqrt{\frac{L}{g}}
\][/tex]

2. Isolate [tex]\( g \)[/tex]:
First, square both sides of the equation to get rid of the square root:
[tex]\[
T^2 = (2\pi)^2 \left(\frac{L}{g}\right)
\][/tex]

3. Simplify the expression:
[tex]\[
T^2 = 4\pi^2 \left(\frac{L}{g}\right)
\][/tex]

4. Rearrange to solve for [tex]\( g \)[/tex]:
[tex]\[
g = \frac{4\pi^2 L}{T^2}
\][/tex]

5. Plug in the given values:
[tex]\[
g = \frac{4\pi^2 \cdot 2}{1.57^2}
\][/tex]

6. Calculate intermediate values:
- Calculate [tex]\( (2 \pi)^2 \)[/tex]:
[tex]\[
(2\pi)^2 = 4\pi^2 \approx 39.4784
\][/tex]
- Calculate [tex]\( 1.57^2 \)[/tex]:
[tex]\[
1.57^2 \approx 2.4649
\][/tex]

7. Finally, calculate [tex]\( g \)[/tex]:
[tex]\[
g = \frac{39.4784 \cdot 2}{2.4649} \approx 32.0325
\][/tex]

So, the value of [tex]\( g \)[/tex] is approximately [tex]\( 32.0325 \)[/tex].