College

\[
\begin{array}{l}
f(x) = -5x \\
g(x) = 8x^2 - 5x - 9 \\
\end{array}
\]

Find \((f \cdot g)(x)\).

A. \(-40x^3 + 25x^2 + 45x\)

B. \(-40x^4 + 25x^3 + 45x^2\)

C. \(-40x^3 - 5x - 9\)

D. \(-40x^2 + 25x + 45x\)

Answer :

To find [tex]\((f \cdot g)(x)\)[/tex] when given the functions [tex]\(f(x) = -5x\)[/tex] and [tex]\(g(x) = 8x^2 - 5x - 9\)[/tex], follow these steps:

1. Understand the operation: The notation [tex]\((f \cdot g)(x)\)[/tex] represents the multiplication of the two functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]. This means we need to multiply the outputs of these functions.

2. Write the functions:
[tex]\[
f(x) = -5x
\][/tex]
[tex]\[
g(x) = 8x^2 - 5x - 9
\][/tex]

3. Multiply the functions:
[tex]\[
(f \cdot g)(x) = f(x) \cdot g(x)
\][/tex]
Substitute [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] into the equation:
[tex]\[
(f \cdot g)(x) = (-5x) \cdot (8x^2 - 5x - 9)
\][/tex]

4. Distribute [tex]\(-5x\)[/tex] to each term inside the parenthesis:
[tex]\[
(f \cdot g)(x) = -5x \cdot 8x^2 + -5x \cdot -5x + -5x \cdot -9
\][/tex]

5. Perform the multiplications:
[tex]\[
-5x \cdot 8x^2 = -40x^3
\][/tex]
[tex]\[
-5x \cdot -5x = 25x^2
\][/tex]
[tex]\[
-5x \cdot -9 = 45x
\][/tex]

6. Combine the results:
[tex]\[
(f \cdot g)(x) = -40x^3 + 25x^2 + 45x
\][/tex]

Thus, the correct expression for [tex]\((f \cdot g)(x)\)[/tex] is:

[tex]\[
-40x^3 + 25x^2 + 45x
\][/tex]

Therefore, the correct answer is:

[tex]\[
-40x^3 + 25x^2 + 45x
\][/tex]