Answer :

Problem 1:

Solomon Grundy applies 1500 N at 20° below, resulting in 1417.3 N horizontally, 509.5 N vertically, and a normal force of 1960 N. Vertical acceleration is 2.548 m/s².

Problem 2:

Workers lift a 140 kg sign. Net horizontal force is 700 N, vertical force is 346.41 N, resulting in horizontal acceleration of 5 m/s², vertical acceleration of 2.474 m/s², and net acceleration of 7 m/s².

Problem 3:

Lifting a 120 kg sign, horizontal force difference is 280.8 N. Horizontal acceleration is 3.744 m/s².

Problem 1: Solomon Grundy Pushing a CrateA

Calculating F_net,x:

F_net,x = F_applied * cos(20°)

F_net,x = 1500 N * cos(20°)

F_net,x ≈ 1417.3 N

Calculating F_net,y:

F_net,y = F_applied * sin(20°)

F_net,y = 1500 N * sin(20°)

F_net,y ≈ 509.5 N

Calculating Normal Force (N):

N = m * g

N = 200 kg * 9.8 m/s^2

N ≈ 1960 N

Calculating a_y:

a_y = F_net,y / m

a_y = (1500 N * sin(20°)) / 200 kg

a_y ≈ 2.548 m/s^2

Problem 2: Construction Workers Lifting a Sign

Calculating F_net,x and F_net,y:

Calculate F_1x, F_1y, F_2x, F_2y using trigonometry.

F_1x = 500 N * 0° = 500 N

F_1y = 500 N * sin(0°) = 0 N

F_2x = 400 N * cos(60°) = 200 N

F_2y = 400 N * sin(60°) = 346.41 N

F_net,x = F_1x + F_2x = 500 N + 200 N = 700 N

F_net,y = F_1y + F_2y = 0 N + 346.41 N = 346.41 N

Calculating a_x and a_y:

a_x = F_net,x / m = 700 N / 140 kg = 5 m/s^2

a_y = F_net,y / m = 346.41 N / 140 kg = 2.474 m/s^2

Calculating Net Acceleration (a_net):

a_net = sqrt(a_x^2 + a_y^2) = sqrt(5^2 + 2.474^2) = sqrt(25 + 6.122) ≈ 7 m/s^2

Problem 3: Construction Workers Moving a Sign on the Ground

Calculating F_net,x:

Calculate F_1x, F_2x using trigonometry.

F_1x = 1500 N * cos(15°) = 1449.43 N

F_2x = 1300 N * cos(25°) = 1168.63 N

F_net,x = F_1x - F_2x = 1449.43 N - 1168.63 N = 280.8 N

Calculating a_x:

a_x = F_net,x / m = 280.8 N / 75 kg = 3.744 m/s^2