High School

Choose the correct simplification of [tex]\left(4x^3 - 3x - 7\right) + \left(3x^3 + 5x + 3\right)[/tex].

A. [tex]7x^3 - 2x - 4[/tex]
B. [tex]x^3 - 8x - 10[/tex]
C. [tex]7x^3 + 2x - 4[/tex]
D. [tex]x^3 + 8x + 10[/tex]

Answer :

To simplify the expression [tex]\((4x^3 - 3x - 7) + (3x^3 + 5x + 3)\)[/tex], follow these steps:

1. Identify Like Terms: First, recognize the like terms in the polynomials:
- The cubic terms: [tex]\(4x^3\)[/tex] and [tex]\(3x^3\)[/tex].
- The linear terms: [tex]\(-3x\)[/tex] and [tex]\(5x\)[/tex].
- The constant terms: [tex]\(-7\)[/tex] and [tex]\(3\)[/tex].

2. Add Like Terms Together:
- For the cubic terms:
[tex]\[
4x^3 + 3x^3 = 7x^3
\][/tex]
- For the linear terms:
[tex]\[
-3x + 5x = 2x
\][/tex]
- For the constant terms:
[tex]\[
-7 + 3 = -4
\][/tex]

3. Combine the Terms into a Single Polynomial:
- Combine the results from each set of like terms:
[tex]\[
7x^3 + 2x - 4
\][/tex]

Thus, the simplified expression is [tex]\(7x^3 + 2x - 4\)[/tex].

Therefore, the correct simplification from the given options is [tex]\(7x^3 + 2x - 4\)[/tex].