College

An RLC circuit is used in a radio to tune into an FM station broadcasting at f = 99.7 MHz. The resistance in the circuit is R = 11.4 Ω, and the inductance is L = 1.58 µH. What capacitance should be used? (in pF)

Answer :

To solve the problem of finding the capacitance for an RLC circuit that tunes into a radio station broadcasting at 99.7 MHz, we need to use the formula for the resonant frequency [tex]f[/tex] of an RLC circuit, which is given by:

[tex]f = \frac{1}{2\pi\sqrt{LC}}[/tex]

Where:

  • [tex]f[/tex] is the resonant frequency,
  • [tex]L[/tex] is the inductance,
  • [tex]C[/tex] is the capacitance.

We are given:

  • [tex]f = 99.7 \text{ MHz} = 99.7 \times 10^6 \text{ Hz}[/tex]
  • [tex]L = 1.58 \text{ } \mu\text{H} = 1.58 \times 10^{-6} \text{ H}[/tex]

We're solving for [tex]C[/tex], the capacitance.

Rearrange the formula to solve for [tex]C[/tex]:

[tex]C = \frac{1}{(2\pi f)^2 L}[/tex]

Now substitute the given values into the formula:

[tex]C = \frac{1}{(2\pi \times 99.7 \times 10^6)^2 \times 1.58 \times 10^{-6}}[/tex]

Calculate the result:

  1. Compute [tex]2\pi \times 99.7 \times 10^6[/tex]:
    [tex]2\pi \times 99.7 \times 10^6 \approx 6.267 \times 10^8[/tex]

  2. Square the result:
    [tex](6.267 \times 10^8)^2 \approx 3.927 \times 10^{17}[/tex]

  3. Compute the product [tex]3.927 \times 10^{17} \times 1.58 \times 10^{-6}[/tex]:
    [tex]6.203 \times 10^{11}[/tex]

  4. Calculate [tex]C[/tex]:
    [tex]C \approx \frac{1}{6.203 \times 10^{11}} \approx 1.61 \times 10^{-12} \text{ F}[/tex]

Convert the capacitance to picofarads (pF):

[tex]C \approx 1.61 \text{ pF}[/tex]

So, the capacitance that should be used is approximately [tex]1.61 \text{ pF}[/tex].