Answer :
We start with the expression
[tex]$$
\frac{\left(12 \times 10^2\right) - \left(7 \times 10^2\right)}{8 \times 10^5}.
$$[/tex]
Step 1. Calculate the numerator
Calculate each term in the numerator:
- For the first term:
[tex]$$12 \times 10^2 = 12 \times 100 = 1200.$$[/tex]
- For the second term:
[tex]$$7 \times 10^2 = 7 \times 100 = 700.$$[/tex]
Subtract the second term from the first:
[tex]$$
1200 - 700 = 500.
$$[/tex]
So, the numerator is [tex]$500$[/tex].
Step 2. Calculate the denominator
The denominator is given as:
[tex]$$
8 \times 10^5 = 8 \times 100000 = 800000.
$$[/tex]
Step 3. Form the fraction
Now, substitute the calculated numerator and denominator into the expression:
[tex]$$
\frac{500}{800000}.
$$[/tex]
Step 4. Simplify the fraction
Dividing [tex]$500$[/tex] by [tex]$800000$[/tex] gives:
[tex]$$
\frac{500}{800000} = 0.000625.
$$[/tex]
Step 5. Express the result in scientific notation
To convert [tex]$0.000625$[/tex] to scientific notation:
[tex]$$
0.000625 = 6.25 \times 10^{-4}.
$$[/tex]
Thus, the expression is equivalent to
[tex]$$
6.25 \times 10^{-4}.
$$[/tex]
Final Answer: Option A is correct.
[tex]$$
\frac{\left(12 \times 10^2\right) - \left(7 \times 10^2\right)}{8 \times 10^5}.
$$[/tex]
Step 1. Calculate the numerator
Calculate each term in the numerator:
- For the first term:
[tex]$$12 \times 10^2 = 12 \times 100 = 1200.$$[/tex]
- For the second term:
[tex]$$7 \times 10^2 = 7 \times 100 = 700.$$[/tex]
Subtract the second term from the first:
[tex]$$
1200 - 700 = 500.
$$[/tex]
So, the numerator is [tex]$500$[/tex].
Step 2. Calculate the denominator
The denominator is given as:
[tex]$$
8 \times 10^5 = 8 \times 100000 = 800000.
$$[/tex]
Step 3. Form the fraction
Now, substitute the calculated numerator and denominator into the expression:
[tex]$$
\frac{500}{800000}.
$$[/tex]
Step 4. Simplify the fraction
Dividing [tex]$500$[/tex] by [tex]$800000$[/tex] gives:
[tex]$$
\frac{500}{800000} = 0.000625.
$$[/tex]
Step 5. Express the result in scientific notation
To convert [tex]$0.000625$[/tex] to scientific notation:
[tex]$$
0.000625 = 6.25 \times 10^{-4}.
$$[/tex]
Thus, the expression is equivalent to
[tex]$$
6.25 \times 10^{-4}.
$$[/tex]
Final Answer: Option A is correct.