High School

Add the polynomials below.

[tex]\left(x^7+3x^3-4x^2\right) + \left(4x^3+2x\right)[/tex]

A. [tex]7x^7+6x^2[/tex]
B. [tex]x^7+7x^3-6x[/tex]
C. [tex]x^7+7x^3-4x^2+2x[/tex]
D. [tex]x^7+3x^3+2x[/tex]

Answer :

To add the given polynomials [tex]\(\left(x^7 + 3x^3 - 4x^2\right)\)[/tex] and [tex]\(\left(4x^3 + 2x\right)\)[/tex], follow these steps:

1. Write down each polynomial:

- The first polynomial is: [tex]\(x^7 + 3x^3 - 4x^2\)[/tex].
- The second polynomial is: [tex]\(4x^3 + 2x\)[/tex].

2. Combine like terms:

- [tex]\(x^7\)[/tex] terms: There is only one term [tex]\(x^7\)[/tex] in the first polynomial.

- [tex]\(x^3\)[/tex] terms: Add the coefficients of the [tex]\(x^3\)[/tex] terms from both polynomials:
- [tex]\(3x^3\)[/tex] from the first polynomial
- [tex]\(4x^3\)[/tex] from the second polynomial
- Total: [tex]\(3x^3 + 4x^3 = 7x^3\)[/tex]

- [tex]\(x^2\)[/tex] terms: There is [tex]\(-4x^2\)[/tex] only in the first polynomial, and no [tex]\(x^2\)[/tex] term in the second polynomial.

- [tex]\(x\)[/tex] terms: Add the [tex]\(x\)[/tex] term present only in the second polynomial:
- There is [tex]\(0\)[/tex] coefficient of [tex]\(x\)[/tex] in the first polynomial
- [tex]\(2x\)[/tex] from the second polynomial
- Total: [tex]\(2x\)[/tex]

3. Write the resulting polynomial:

The sum of the polynomials, after combining like terms, is:
[tex]\[
x^7 + 7x^3 - 4x^2 + 2x
\][/tex]

This matches option C: [tex]\(x^7 + 7x^3 - 4x^2 + 2x\)[/tex]. Therefore, the correct answer is:

C. [tex]\(x^7 + 7x^3 - 4x^2 + 2x\)[/tex]