College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Add [tex]4 \frac{3}{100}[/tex] and [tex]5 \frac{13}{15}[/tex].

Answer :

Certainly! To add the mixed numbers [tex]\(4 \frac{3}{100}\)[/tex] and [tex]\(5 \frac{13}{15}\)[/tex], follow these steps:

1. Convert the mixed numbers to improper fractions:

For [tex]\(4 \frac{3}{100}\)[/tex]:
[tex]\[
4 \frac{3}{100} = 4 + \frac{3}{100}
\][/tex]
Converting to an improper fraction:
[tex]\[
4 \frac{3}{100} = \frac{4 \cdot 100 + 3}{100} = \frac{400 + 3}{100} = \frac{403}{100}
\][/tex]

For [tex]\(5 \frac{13}{15}\)[/tex]:
[tex]\[
5 \frac{13}{15} = 5 + \frac{13}{15}
\][/tex]
Converting to an improper fraction:
[tex]\[
5 \frac{13}{15} = \frac{5 \cdot 15 + 13}{15} = \frac{75 + 13}{15} = \frac{88}{15}
\][/tex]

2. Find a common denominator to add the fractions:

The denominators are 100 and 15. The least common multiple (LCM) of 100 and 15 is 300. Convert both fractions to have this common denominator.

Convert [tex]\(\frac{403}{100}\)[/tex] to a denominator of 300:
[tex]\[
\frac{403}{100} = \frac{403 \times 3}{100 \times 3} = \frac{1209}{300}
\][/tex]

Convert [tex]\(\frac{88}{15}\)[/tex] to a denominator of 300:
[tex]\[
\frac{88}{15} = \frac{88 \times 20}{15 \times 20} = \frac{1760}{300}
\][/tex]

3. Add the fractions:

Now add the fractions:
[tex]\[
\frac{1209}{300} + \frac{1760}{300} = \frac{1209 + 1760}{300} = \frac{2969}{300}
\][/tex]

4. Simplify the fraction (if possible) and convert back to a mixed number:

Divide [tex]\(2969\)[/tex] by [tex]\(300\)[/tex]:
[tex]\[
2969 \div 300 \approx 9.896666666666668
\][/tex]

So, the sum of [tex]\(4 \frac{3}{100}\)[/tex] and [tex]\(5 \frac{13}{15}\)[/tex] is approximately [tex]\(9.897\)[/tex].

Thus, [tex]\(4 \frac{3}{100} + 5 \frac{13}{15} = 9.896666666666668\)[/tex].