Answer :
To find the length of the base of the triangle, we can use the formula for the area of a triangle:
[tex]\[
\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}
\][/tex]
Given:
- The area of the triangle is [tex]\(38.4 \, \text{cm}^2\)[/tex].
- The height of the triangle is [tex]\(12.8 \, \text{cm}\)[/tex].
We need to find the length of the base. Let's rearrange the formula to solve for the base:
[tex]\[
\text{base} = \frac{2 \times \text{Area}}{\text{height}}
\][/tex]
Now, substitute the known values into the equation:
[tex]\[
\text{base} = \frac{2 \times 38.4}{12.8}
\][/tex]
Calculate the values:
[tex]\[
\text{base} = \frac{76.8}{12.8}
\][/tex]
Simplifying gives:
[tex]\[
\text{base} = 6
\][/tex]
Therefore, the length of the base of the triangle is [tex]\(6 \, \text{cm}\)[/tex].
[tex]\[
\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}
\][/tex]
Given:
- The area of the triangle is [tex]\(38.4 \, \text{cm}^2\)[/tex].
- The height of the triangle is [tex]\(12.8 \, \text{cm}\)[/tex].
We need to find the length of the base. Let's rearrange the formula to solve for the base:
[tex]\[
\text{base} = \frac{2 \times \text{Area}}{\text{height}}
\][/tex]
Now, substitute the known values into the equation:
[tex]\[
\text{base} = \frac{2 \times 38.4}{12.8}
\][/tex]
Calculate the values:
[tex]\[
\text{base} = \frac{76.8}{12.8}
\][/tex]
Simplifying gives:
[tex]\[
\text{base} = 6
\][/tex]
Therefore, the length of the base of the triangle is [tex]\(6 \, \text{cm}\)[/tex].