High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ A sphere of radius 5.15 cm and uniform surface charge density [tex]+12.1 \, \mu C/m^2[/tex] exerts an electrostatic force of magnitude [tex]35.9 \times 10^{-3} \, N[/tex] on a point charge [tex]+1.75 \, \mu C[/tex].

Find the separation between the point charge and the center of the sphere.

Answer :

The radius of the sphere is r=5.15 cm=0.0515 m, and its surface is given by
[tex]A=4 \pi r^2 = 4 \pi (0.0515 m)^2 = 0.033 m^2[/tex]

So the total charge on the surface of the sphere is, using the charge density
[tex]\rho=+1.21 \mu C/m^2 = +1.21 \cdot 10^{-6} C/m^2[/tex]:
[tex]Q= \rho A = (+1.21 \cdot 10^{-6} C/m^2)(0.033 m^2)=4.03 \cdot 10^{-8}C[/tex]

The electrostatic force between the sphere and the point charge is:
[tex]F=k_e \frac{Qq}{r^2} [/tex]
where
ke is the Coulomb's constant
Q is the charge on the sphere
[tex]q=+1.75 \muC = +1.75 \cdot 10^{-6}C[/tex] is the point charge
r is their separation

Re-arranging the equation, we can find the separation between the sphere and the point charge:
[tex]r=\sqrt{ \frac{k_e Q q}{F} }= \sqrt{ \frac{(8.99 \cdot 10^9 Nm^2 C^{-2})(4.03 \cdot 10^{-8} C)(1.75 \cdot 10^{-6}C)}{35.9 \cdot 10^{-3}N} }=0.133 m=13.3 cm [/tex]

Final answer:

The separation between the point charge and the center of the sphere is approximately [tex]\( 0.0281 \, \text{m} \).[/tex]

Explanation:

Using Coulomb's law, we have:

[tex]\[ F = \frac{{k \cdot |q_1| \cdot |q_2|}}{{r^2}} \][/tex]

Where:

- F is the electrostatic force,

- k is Coulomb's constant [tex](\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)),[/tex]

- [tex]\( q_1 \)[/tex]and [tex]\( q_2 \)[/tex] are the magnitudes of the charges, and

- r is the separation between the charges.

Rearranging for r, we get:

[tex]\[ r = \sqrt{\frac{{k \cdot |q_1| \cdot |q_2|}}{{F}}} \][/tex]

Substituting the given values:

[tex]\[ r = \sqrt{\frac{{8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \cdot (12.1 \times 10^{-6} \, \text{C/m}^2) \cdot (1.75 \times 10^{-6} \, \text{C})}}{{35.9 \times 10^{-3} \, \text{N}}}} \][/tex]

[tex]\[ r = \sqrt{\frac{{8.99 \times 10^9 \cdot 12.1 \cdot 1.75}}{{35.9}}} \, \text{m} \][/tex]

[tex]\[ r \approx 0.0281 \, \text{m} \][/tex]

Therefore, the separation between the point charge and the center of the sphere is approximately[tex]\( 0.0281 \, \text{m} \).[/tex]