High School

If [tex]f(x)[/tex] is an exponential function of the form [tex]y = ab^x[/tex] where [tex]f(-3.5) = 6[/tex] and [tex]f(0) = 82[/tex], then find the value of [tex]f(-0.5)[/tex], to the nearest hundredth.

Answer :

We start with the exponential function given by

[tex]$$
f(x) = a b^x.
$$[/tex]

Step 1. Find the constant [tex]\( a \)[/tex]:

Since [tex]\( f(0) = a \cdot b^0 = a \)[/tex], we are given

[tex]$$
f(0) = 82,
$$[/tex]

so

[tex]$$
a = 82.
$$[/tex]

Step 2. Find the constant [tex]\( b \)[/tex]:

We are also given

[tex]$$
f(-3.5) = 6.
$$[/tex]

Substitute [tex]\( x = -3.5 \)[/tex] into the function:

[tex]$$
f(-3.5) = 82 \cdot b^{-3.5} = 6.
$$[/tex]

Isolate [tex]\( b^{-3.5} \)[/tex] by dividing both sides by 82:

[tex]$$
b^{-3.5} = \frac{6}{82}.
$$[/tex]

It is more convenient to work with a positive exponent. Recall that

[tex]$$
b^{-3.5} = \frac{1}{b^{3.5}},
$$[/tex]

so we take the reciprocal:

[tex]$$
b^{3.5} = \frac{82}{6}.
$$[/tex]

Now, solve for [tex]\( b \)[/tex] by taking the [tex]\( \frac{1}{3.5} \)[/tex] power on both sides:

[tex]$$
b = \left(\frac{82}{6}\right)^{\frac{1}{3.5}}.
$$[/tex]

Calculating the approximate value, we obtain

[tex]$$
b \approx 2.1109358187.
$$[/tex]

Step 3. Calculate [tex]\( f(-0.5) \)[/tex]:

Now, we use the function with [tex]\( x = -0.5 \)[/tex]:

[tex]$$
f(-0.5) = 82 \cdot b^{-0.5}.
$$[/tex]

Substitute the value of [tex]\( b \)[/tex]:

[tex]$$
f(-0.5) \approx 82 \cdot \left(2.1109358187\right)^{-0.5}.
$$[/tex]

Evaluating this expression, we find

[tex]$$
f(-0.5) \approx 56.4386137210.
$$[/tex]

Step 4. Round to the nearest hundredth:

Rounding the result to the nearest hundredth gives

[tex]$$
f(-0.5) \approx 56.44.
$$[/tex]

Thus, the value of [tex]\( f(-0.5) \)[/tex] is approximately

[tex]$$
\boxed{56.44}.
$$[/tex]