High School

A sequence is defined by the recursive function [tex]$f(n+1)=\frac{1}{3} f(n)$[/tex]. If [tex]$f(3)=9$[/tex], what is [tex]$f(1)$[/tex]?

A. 1
B. 3
C. 27
D. 81

Answer :

To solve this problem, we need to determine the value of [tex]\( f(1) \)[/tex] given the recursive formula for the sequence and the fact that [tex]\( f(3) = 9 \)[/tex].

The recursive relationship given is:
[tex]\[ f(n+1) = \frac{1}{3} f(n) \][/tex]

We need to use this relationship to find previous terms in the sequence, starting from [tex]\( f(3) \)[/tex] and working backward to find [tex]\( f(1) \)[/tex].

1. Find [tex]\( f(2) \)[/tex]:
- We know [tex]\( f(3) = \frac{1}{3} f(2) \)[/tex].
- Therefore, [tex]\( f(2) = 3 \times f(3) \)[/tex].
- Substitute [tex]\( f(3) = 9 \)[/tex] into the equation:
[tex]\( f(2) = 3 \times 9 = 27 \)[/tex].

2. Find [tex]\( f(1) \)[/tex]:
- Next, use the formula to express [tex]\( f(2) \)[/tex] in terms of [tex]\( f(1) \)[/tex]:
- [tex]\( f(2) = \frac{1}{3} f(1) \)[/tex].
- Therefore, [tex]\( f(1) = 3 \times f(2) \)[/tex].
- Substitute [tex]\( f(2) = 27 \)[/tex] into the equation:
[tex]\( f(1) = 3 \times 27 = 81 \)[/tex].

Thus, the value of [tex]\( f(1) \)[/tex] is 81.