Answer :
To find the mass of the roller coaster, we can use the formula for potential energy:
[tex]\[ PE = m \cdot g \cdot h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.81 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height.
We need to rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{PE}{g \cdot h} \][/tex]
Let's plug in the given values:
- [tex]\( PE = 235,200 \, \text{J} \)[/tex] (joules),
- [tex]\( h = 30 \, \text{m} \)[/tex] (meters),
- [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex] (acceleration due to gravity).
Now substitute these into the rearranged formula:
[tex]\[ m = \frac{235,200}{9.81 \cdot 30} \][/tex]
Calculating the denominator first:
[tex]\[ 9.81 \cdot 30 = 294.3 \][/tex]
Then divide the potential energy by this result to find the mass:
[tex]\[ m = \frac{235,200}{294.3} \approx 799.18 \][/tex]
This result is approximately 799.18 kg. Therefore, the correct mass of the roller coaster is closest to [tex]\( 800 \, \text{kg} \)[/tex].
So, the correct choice is [tex]\( 800 \, \text{kg} \)[/tex].
[tex]\[ PE = m \cdot g \cdot h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.81 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height.
We need to rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{PE}{g \cdot h} \][/tex]
Let's plug in the given values:
- [tex]\( PE = 235,200 \, \text{J} \)[/tex] (joules),
- [tex]\( h = 30 \, \text{m} \)[/tex] (meters),
- [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex] (acceleration due to gravity).
Now substitute these into the rearranged formula:
[tex]\[ m = \frac{235,200}{9.81 \cdot 30} \][/tex]
Calculating the denominator first:
[tex]\[ 9.81 \cdot 30 = 294.3 \][/tex]
Then divide the potential energy by this result to find the mass:
[tex]\[ m = \frac{235,200}{294.3} \approx 799.18 \][/tex]
This result is approximately 799.18 kg. Therefore, the correct mass of the roller coaster is closest to [tex]\( 800 \, \text{kg} \)[/tex].
So, the correct choice is [tex]\( 800 \, \text{kg} \)[/tex].