Answer :
We are given the function
[tex]$$
f(t)=44000t,
$$[/tex]
with the time variable [tex]$t$[/tex] (in hours) restricted to the interval
[tex]$$
3 \leq t \leq 6.
$$[/tex]
Step 1: Identify the Domain
Since the landscaper works for at least 3 hours and at most 6 hours, the domain is
[tex]$$
[3, 6].
$$[/tex]
Step 2: Find the Minimum Value
To find the minimum number of square feet mowed, we evaluate [tex]$f(t)$[/tex] at the smallest value of the domain, [tex]$t=3$[/tex]:
[tex]$$
f(3)=44000 \times 3=132000.
$$[/tex]
Step 3: Find the Maximum Value
To find the maximum number of square feet mowed, we evaluate [tex]$f(t)$[/tex] at the largest value of the domain, [tex]$t=6$[/tex]:
[tex]$$
f(6)=44000 \times 6=264000.
$$[/tex]
Step 4: Determine the Range
Since [tex]$t$[/tex] can be any real number in the interval [tex]$[3,6]$[/tex], the function [tex]$f(t)$[/tex] can produce any value between [tex]$132000$[/tex] and [tex]$264000$[/tex]. Therefore, the range of the function is:
[tex]$$
[132000, 264000].
$$[/tex]
Conclusion
The practical range of the function is "all real numbers from 132,000 to 264,000, inclusive."
[tex]$$
f(t)=44000t,
$$[/tex]
with the time variable [tex]$t$[/tex] (in hours) restricted to the interval
[tex]$$
3 \leq t \leq 6.
$$[/tex]
Step 1: Identify the Domain
Since the landscaper works for at least 3 hours and at most 6 hours, the domain is
[tex]$$
[3, 6].
$$[/tex]
Step 2: Find the Minimum Value
To find the minimum number of square feet mowed, we evaluate [tex]$f(t)$[/tex] at the smallest value of the domain, [tex]$t=3$[/tex]:
[tex]$$
f(3)=44000 \times 3=132000.
$$[/tex]
Step 3: Find the Maximum Value
To find the maximum number of square feet mowed, we evaluate [tex]$f(t)$[/tex] at the largest value of the domain, [tex]$t=6$[/tex]:
[tex]$$
f(6)=44000 \times 6=264000.
$$[/tex]
Step 4: Determine the Range
Since [tex]$t$[/tex] can be any real number in the interval [tex]$[3,6]$[/tex], the function [tex]$f(t)$[/tex] can produce any value between [tex]$132000$[/tex] and [tex]$264000$[/tex]. Therefore, the range of the function is:
[tex]$$
[132000, 264000].
$$[/tex]
Conclusion
The practical range of the function is "all real numbers from 132,000 to 264,000, inclusive."