Answer :
A. Converting decimals to fractions:
[tex]0.6[/tex] can be written as [tex]\frac{6}{10}[/tex], which simplifies to [tex]\frac{3}{5}[/tex].
[tex]0.85[/tex] can be written as [tex]\frac{85}{100}[/tex], which simplifies to [tex]\frac{17}{20}[/tex].
[tex]0.45[/tex] can be written as [tex]\frac{45}{100}[/tex], which simplifies to [tex]\frac{9}{20}[/tex].
[tex]51.3[/tex] can be expressed as [tex]51 + \frac{3}{10} = \frac{513}{10}[/tex].
B. Converting fractions to decimals:
[tex]\frac{10}{25} = 0.4[/tex].
[tex]\frac{15}{20} = 0.75[/tex].
[tex]\frac{6}{5} = 1.2[/tex].
[tex]\frac{2}{125} = 0.016[/tex].
C. Expressing decimals as fractions in lowest form:
[tex]0.75[/tex] is [tex]\frac{75}{100}[/tex], which simplifies to [tex]\frac{3}{4}[/tex].
[tex]0.20[/tex] is [tex]\frac{20}{100}[/tex], which simplifies to [tex]\frac{1}{5}[/tex].
[tex]0.150[/tex] is [tex]\frac{150}{1000}[/tex], which simplifies to [tex]\frac{3}{20}[/tex].
[tex]0.055[/tex] is [tex]\frac{55}{1000}[/tex], which simplifies to [tex]\frac{11}{200}[/tex].
D. Comparing numbers using <, >, or =:
[tex]7.05 < 7.50[/tex]
[tex]1.7 > 1 \frac{7}{10} (1.7)[/tex]
[tex]5.85 > 5.058[/tex]
[tex]12.00 < 12.10[/tex]
[tex]8.12 < 8.63[/tex]
[tex]10.8 < 99.9[/tex]
[tex]0.4 < 0.58[/tex]
[tex]16.3 > 1.63[/tex]
[tex]1 \frac{1}{2} = 1.5[/tex]