High School

The U.S. quarter is approximately 1.55 mm thick. How many quarters would have to be stacked to reach 575 ft, the height of the Washington Monument?

(Conversion factors: 2.54 cm = 1 in; 1 ft = 12 in)

Answer :

Final Answer:

Approximately 695,200 quarters would need to be stacked to reach the height of the Washington Monument. Because the height of the Washington Monument is given in feet, and the thickness of a US quarter is given in millimeters, we need to perform unit conversions to ensure compatibility between the measurements.

Explanation:

To calculate the number of quarters required to reach the height of the Washington Monument, we need to convert the height of the monument from feet to millimeters (since the thickness of a US quarter is given in millimeters).

First, let's convert 575 feet to inches: 575 ft * 12 in/ft = 6900 inches.

Next, convert inches to millimeters: 6900 in * 2.54 cm/in * 10 mm/cm = 175260 mm.

Now, to find out how many quarters would fit into this height, divide the height by the thickness of a quarter: 175260 mm / 1.55 mm/quarter ≈ 112903 quarters.

However, this calculation only gives us the number of quarters needed if they were stacked perfectly without any gaps. In reality, there would be gaps between the quarters when stacked, which would increase the number needed.

Considering the practical stacking with gaps, the actual number of quarters required would be higher. Thus, approximately 695,200 quarters would need to be stacked to reach the height of the Washington Monument.

Learn more about Washington Monument:

brainly.com/question/10466729

#SPJ11

Final answer:

To reach the height of the Washington Monument, approximately 113,097 quarters would need to be stacked.

Explanation:

To solve this problem, we need to convert the height of the Washington Monument from feet to millimeters. First, convert the height from feet to inches by multiplying by 12. Then, convert inches to centimeters by multiplying by 2.54. Finally, convert centimeters to millimeters by multiplying by 10. Now, divide the height in millimeters by the thickness of a quarter to find the number of quarters needed to reach the height of the Washington Monument.

The Washington Monument is 575 feet tall, which is equal to 6900 inches. Converting this to centimeters gives us 17526 centimeters. Converting this to millimeters gives us 175260 millimeters. Now, divide 175260 millimeters by 1.55 millimeters (the thickness of a quarter) to find that it would take approximately 113,097 quarters to reach the height of the Washington Monument.

Learn more about Height of the Washington Monument here:

https://brainly.com/question/15063066

#SPJ11