Answer :
Sure! Let's solve this problem step-by-step:
1. Identify the given values:
- Mass of the brick, [tex]\( m = 2.3 \)[/tex] kg
- Height the brick is lifted, [tex]\( h = 1.9 \)[/tex] m
- Acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex]
2. Recall the formula for gravitational potential energy (GPE):
[tex]\[ \text{GPE} = m \cdot g \cdot h \][/tex]
3. Substitute the given values into the formula:
[tex]\[ \text{GPE} = 2.3 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 1.9 \, \text{m} \][/tex]
4. Calculate the gravitational potential energy:
[tex]\[ \text{GPE} = 2.3 \times 9.8 \times 1.9 \][/tex]
[tex]\[ \text{GPE} = 42.826 \, \text{J} \][/tex]
Since 42.826 J is very close to 42.8 J when rounded to one decimal place, the correct answer is:
B. 42.8 J
1. Identify the given values:
- Mass of the brick, [tex]\( m = 2.3 \)[/tex] kg
- Height the brick is lifted, [tex]\( h = 1.9 \)[/tex] m
- Acceleration due to gravity, [tex]\( g = 9.8 \)[/tex] m/s[tex]\(^2\)[/tex]
2. Recall the formula for gravitational potential energy (GPE):
[tex]\[ \text{GPE} = m \cdot g \cdot h \][/tex]
3. Substitute the given values into the formula:
[tex]\[ \text{GPE} = 2.3 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 1.9 \, \text{m} \][/tex]
4. Calculate the gravitational potential energy:
[tex]\[ \text{GPE} = 2.3 \times 9.8 \times 1.9 \][/tex]
[tex]\[ \text{GPE} = 42.826 \, \text{J} \][/tex]
Since 42.826 J is very close to 42.8 J when rounded to one decimal place, the correct answer is:
B. 42.8 J