High School

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)[/tex]. Her work is correct and is shown below:

\[
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \\
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \\
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4 \\
\end{array}
\]

When she subtracts 4 from both sides, [tex]\frac{1}{2}x = -\frac{1}{2}x[/tex] results. What is the value of [tex]x[/tex]?

A. -1
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

Let's go through the solution to find the value of [tex]\( x \)[/tex] step-by-step:

1. Start with the given equation:
[tex]\[
\frac{1}{2}(x - 14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

2. Simplify both sides:
- Distribute [tex]\( \frac{1}{2} \)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
This becomes:
[tex]\[
\frac{1}{2}x - 7 + 11
\][/tex]

- Simplify the left side:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

- Distribute the negative sign on the right side:
[tex]\[
\frac{1}{2}x - x + 4
\][/tex]

- Simplify:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

So, the equation now looks like:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

3. Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

4. Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to simplify:
[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

5. Combine the terms on the left side:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 0 \)[/tex].