High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ A body moving with SHM has an amplitude of 1.5m and a period of oscillation of 3 seconds. Find the velocity and acceleration of the body at t = 0.5 seconds, when time is measured from (i) the mean position and (ii) the extreme position.

Answer :

To solve this problem, we need to understand some key concepts of Simple Harmonic Motion (SHM). In SHM, a body oscillates back and forth over the same path, where its motion can be described using sinusoidal functions.


  1. Definitions and Given Values:


    • Amplitude (A): This is the maximum displacement from the mean position. Here, [tex]A = 1.5 \text{ m}[/tex].

    • Period (T): This is the time taken for one complete oscillation. Here, [tex]T = 3 \text{ seconds}[/tex].

    • Angular frequency ([tex]\omega[/tex]): This is calculated as [tex]\omega = \frac{2\pi}{T}[/tex]. So, [tex]\omega = \frac{2\pi}{3} \text{ rad/s}[/tex].



  2. Equations in SHM:


    • Displacement from the mean position (x):
      [tex]x(t) = A \cos(\omega t)[/tex]

    • Velocity (v):
      [tex]v(t) = -A\omega \sin(\omega t)[/tex]

    • Acceleration (a):
      [tex]a(t) = -A\omega^2 \cos(\omega t)[/tex]




(i) Calculations from the Mean Position at [tex]t = 0.5 \text{ seconds}[/tex]

Velocity:
[tex]v(0.5) = -1.5 \times \frac{2\pi}{3} \times \sin\left(\frac{2\pi}{3} \times 0.5\right)[/tex]
Calculating further:
[tex]v(0.5) = -1.5 \times \frac{2\pi}{3} \times \sin\left(\frac{\pi}{3}\right) = -1.5 \times \frac{2\pi}{3} \times \frac{\sqrt{3}}{2}[/tex]
[tex]v(0.5) = -\pi \sqrt{3} \approx -5.44 \text{ m/s}[/tex]

Acceleration:
[tex]a(0.5) = -1.5 \times \left(\frac{2\pi}{3}\right)^2 \times \cos\left(\frac{2\pi}{3} \times 0.5\right)[/tex]
Calculating further:
[tex]a(0.5) = -1.5 \times \left(\frac{2\pi}{3}\right)^2 \times \frac{1}{2}[/tex]
[tex]a(0.5) = -\frac{2\pi^2}{3} \approx -6.58 \text{ m/s}^2[/tex]

(ii) Calculations from the Extreme Position at [tex]t = 0.5 \text{ seconds}[/tex]

From the extreme position, the displacement uses a sine function for SHM. Here:

Velocity:
[tex]v(0.5) = A\omega \cos\left(\omega t\right)[/tex]
Calculating further:
[tex]v(0.5) = 1.5 \times \frac{2\pi}{3} \times \cos\left(\frac{2\pi}{3} \times 0.5\right) = 1.5 \times \frac{2\pi}{3} \times \frac{1}{2}[/tex]
[tex]v(0.5) = \frac{\pi}{2} \approx 1.57 \text{ m/s}[/tex]

Acceleration:
[tex]a(0.5) = -A\omega^2 \sin\left(\omega t\right)[/tex]
Calculating further:
[tex]a(0.5) = -1.5 \times \left(\frac{2\pi}{3}\right)^2 \times \sin\left(\frac{\pi}{3}\right)[/tex]
[tex]a(0.5) = -\pi^2\sqrt{3} \approx -17.08 \text{ m/s}^2[/tex]

These results give us the velocity and acceleration of the body at [tex]t = 0.5 \text{ seconds}[/tex] from both the mean and extreme positions.