Answer :
First, note that the mass of the ball is given in grams. We need to convert it to kilograms because the standard unit of mass in the formula is kilograms.
[tex]$$
\text{Mass in kilograms} = \frac{140 \text{ g}}{1000} = 0.14 \text{ kg}
$$[/tex]
The acceleration is given as:
[tex]$$
a = 25 \ \text{m/s}^2.
$$[/tex]
We use the formula:
[tex]$$
F = m \cdot a
$$[/tex]
Substitute the values:
[tex]$$
F = 0.14 \text{ kg} \times 25 \ \text{m/s}^2 = 3.5 \text{ N}.
$$[/tex]
Thus, the force needed to accelerate the ball at [tex]$25 \ \text{m/s}^2$[/tex] is [tex]$3.5 \ \text{N}$[/tex].
[tex]$$
\text{Mass in kilograms} = \frac{140 \text{ g}}{1000} = 0.14 \text{ kg}
$$[/tex]
The acceleration is given as:
[tex]$$
a = 25 \ \text{m/s}^2.
$$[/tex]
We use the formula:
[tex]$$
F = m \cdot a
$$[/tex]
Substitute the values:
[tex]$$
F = 0.14 \text{ kg} \times 25 \ \text{m/s}^2 = 3.5 \text{ N}.
$$[/tex]
Thus, the force needed to accelerate the ball at [tex]$25 \ \text{m/s}^2$[/tex] is [tex]$3.5 \ \text{N}$[/tex].